Amplify Desmos Math Texas, Grade 3, Scope and Sequence

The following shows the scope and sequence of Amplify Desmos Math Texas, Grade 3, that outlines the concepts, knowledge, and skills of the course aligned to the Texas Essential Knowledge and Skills (TEKS) and the Texas English Language Proficiency Standards (ELPS) for Grade 3.

Unit 1:	Introducing Multiplication		
Lesson	Title Concepts, Knowledge, and Skills	TEKS	ELPS
Sub-unit	1: Introducing Multiplication With Equal Groups		
1.01	Explore: Finding Equal Groups Where do you see equal groups around our school community? Recognize and represent examples of equal groups in the school community.	Building Toward 3.4.D Process TEKS: 3.1.A, 3.1.B, 3.1.D	1.C, 1.E, 2.B, 2.C, 2.E, 2.F
1.02	Equal Groups Determining the Total Number of Objects Using Equal Groups Representations Represent and describe situations involving equal groups.	3.4.D, 3.4.E Process TEKS: 3.1.C, 3.1.D, 3.1.E	1.E, 2.C, 2.D, 2.E, 2.F, 4.D, 4.F
1.03	More Equal Groups Representing Multiplication With Equal Groups Drawings Write multiplication expressions to represent diagrams and situations involving equal groups.	3.4.D, 3.4.E, 3.5.C Process TEKS: 3.1.D, 3.1.E	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.C, 3.F, 3.H
1.04	Book Clubs Solving and Representing Multiplication Problems With Strip Diagrams Represent and solve multiplication problems with strip diagrams.	3.4.E, 3.4.K, 3.5.B, 3.5.C Process TEKS: 3.1.D	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A, 3.E, 3.F, 3.G, 3.H
1.05	Choosing Your Own Strategy Solving and Representing Multiplication Problems With Equations Solve multiplication problems in context and represent situations with multiplication equations.	3.4.F, 3.4.K, 3.5.B Process TEKS: 3.1.C, 3.1.D, 3.1.E, 3.1.F	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 3.F
1.06	What's Missing? Relating Representations to Equations With Unknown Numbers Write equations to represent multiplication situations and strip diagrams, using a symbol for the unknown number.	3.4.F, 3.5.B, 3.5.D Process TEKS: 3.1.A, 3.1.C, 3.1.D, 3.1.F	1.E, 1.F, 2.B, 2.C, 2.D, 2.E, 2.F

1.07	As a Matter of Fact Developing Fluency With Multiplication Facts in Which One Factor Is 2, 5, or 10	3.4.E, 3.4.F Process TEKS: 3.1.E, 3.1.F,	1.E, 1.F, 2.C, 2.D, 2.E, 2.F
	Multiply one-digit numbers by factors of 2, 5, and 10.	3.1.G	
Sub-unit	2: Introducing Multiplication With Arrays	'	
1.08	A New Type of Equal Groups Drawing Finding, Drawing, and Describing Arrays Arrange objects into arrays and describe the arrays in terms of equal groups.	Building Toward 3.4.E Process TEKS: 3.1.D	1.B, 2.B, 2.C, 2.D, 2.E, 3.A, 3.C, 3.F
1.09	Arrays of Flavor Exploring the Commutative Property of Multiplication Describe the Commutative Property of Multiplication using arrays.	3.4.E Process TEKS: 3.1.F	1.B, 1.F, 2.B, 2.C, 2.D, 2.E, 3.F
1.10	Organizing Art Supplies Representing and Solving Multiplication Problems With Arrays Represent and describe how to use arrays and known facts to solve for unknown facts	3.4.F, 3.4.K, 3.5.B Process TEKS: 3.1.C, 3.1.D, 3.1.E	1.E, 2.B, 2/C, 2.D, 2.E, 2.F, 3.F, 4.C, 4.D, 4.E, 4.F
1.11	in multiplication problems. A Community Reading Event Different Representations of Multiplication Solve real-world problems involving multiplication and arrays.	3.4.A, 3.4.D, 3.4.E, 3.4.F, 3.5.B Process TEKS: 3.1.A, 3.1.C, 3.1.D	1.C, 1.E, 2.C, 2.D, 2.E, 2.F, 3.F
1.12	Representing and Solving Problems Two-Step Multiplication Problems With Arrays, Strip Diagrams, and Equations Solve two-step multiplication problems using more than one representation.	3.4.F, 3.4.K, 3.5.B Process TEKS: 3.1.C, 3.1.D	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 4.C, 4.D, 4.E, 4.F
Sub-unit	: 3: Data in Scaled Graphs		
1.13	School Surveys Interpreting Scaled Pictographs Interpret data represented on a scaled pictograph.	3.8.B Process TEKS: 3.1.C, 3.1.D, 3.1.E, 3.1.F	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 3.D, 3.F
1.14	Library Surveys Interpreting Scaled Bar Graphs and Frequency Tables Represent and interpret data using frequency tables and scaled pictographs and bar graphs.	3.8.A, 3.8.B Process TEKS: 3.1.D, 3.1.E	1.B, 1.E, 2.B, 2.C, 2.E, 3.F
1.15	Which Character Are You? Summarizing Data Using Scaled Pictographs Represent data on scaled pictographs.	3.4.E, 3.8.A Process TEKS: 3.1.B, 3.1.D, 3.1.E	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A, 3.E

1.16	Puppy Pile Summarizi	ng Data Using Scaled Bar Graphs I bar graphs.	3.8.A Process TEKS : 3.1.D, 3.1.E, 3.1.F	1.E, 2.B, 2.E, 2.F, 3.F
1.17	2, 5, or 10? Choosing a	Scale the data being represented and create a bar graph.	3.8.A Process TEKS : 3.1.D, 3.1.E, 3.1.G	1.E, 2.B, 2.D, 2.E, 2.F, 3.A, 3.E
1.18	Messy Measurements Describe measurement of	•	3.8.A Process TEKS: 3.1.D, 3.1.E	1.B, 1.F, 2.B, 2.E, 3.F
1.19	Dots and More Dots! N	Nore Dot Plots p questions using scaled dot plots.	3.8.A, 3.8.B Process TEKS: 3.1.C, 3.1.D	1.E, 2.B, 2.C, 2.D, 2.E, 2.F
1.20	·	ering One- and Two-Step Questions About Data problems about data represented on a scaled bar graph.	3.4.E, 3.8.B Process TEKS: 3.1.B, 3.1.C, 3.1.D	1.E, 1.F, 2.C, 2.D, 2.E, 2.F, 3.A, 3.E, 3.F, 3.G, 3.H
Sub-unit	4: Relating Area to Multi	plication		
1.21		ting Multiplication Expressions to Tiled Rectangles essions to the areas of rectangles.	3.4.E, 3.6.C Process TEKS: 3.1.D, 3.1.F	1.C, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 4.D, 4.F
1.22	,	rmining the Area of Rectangles Without a Grid	3.6.C Process TEKS: 3.1.B, 3.1.G	1.D, 1.E, 1.F, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A
1.23		Determining the Area of Figures Made of Rectangles ures composed of non-overlapping rectangles.	3.6.C, 3.6.D Process TEKS: 3.1.F, 3.1.G	1.E, 1.F, 2.B, 2.C, 2.D, 2.E, 2.F
1.24	Painting the Library Ca Addition	lculating the Area of Figures Using Multiplication and	3.4.F, 3.6.D Process TEKS: 3.1.C, 3.1.D, 3.1.F	1.E, 1.F, 2.B, 2.C, 2.D, 2.E, 2.F, 3.E, 3.G
	Determine the area of rec	stangle figures using side lengths.	4.111	
Unit 2:	Adding, Subtractin	g, and Rounding Larger Numbers		
Lesson	Title	Concepts, Knowledge and Skills	TEKS	ELPS
Sub-unit	1: Adding and Subtraction	ng Within 1,000		

2.01	Explore: Creating a Photo Gallery How many ways can you represent 999? Begin to think about numbers and their place value by representing 999 in multiple ways.	Building Toward 3.4.A Process TEKS: 3.1.A, 3.1.B, 3.1.E	1.C, 1.E, 2.B, 2.D, 2.E, 2.F
2.02	Panda Patterns Using Addition Patterns to Determine Sums Use known sums and patterns to determine unknown sums.	Building Toward 3.4.A Process TEKS: 3.1.F	1.E, 2.B, 2.C, 2.D, 2.E, 2.F
2.03	Adding Your Way Adding Using Strategies Based on Place Value Review strategies for adding numbers within 1,000 and relate the base-ten drawings to the equations.	3.2.A, 3.4.A, 3.5.A Process TEKS: 3.1.B, 3.1.F, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.D, 3.E, 3.F, 4.D, 4.F
2.04	Adding Strategically Adding Using Strategies Based on Properties of Operations and the Relationship Between Addition and Subtraction Compare 2 addition strategies and use them both to determine sums.	3.4.A, 3.4.F Process TEKS: 3.1.C, 3.1.D, 3.1.F	1.E, 2.C, 2.D, 2.E, 2.F, 4.D, 4.F
2.05	Subtracting Your Way Subtracting Using Strategies Based on Place Value Activate prior knowledge of subtraction and review strategies based on place value for subtracting numbers within 1,000.	3.4.A, 3.5.A Process TEKS: 3.1.C, 3.1.D, 3.1.F	1.E, 1.F, 2.B, 2.C, 2.D, 2.E, 2.F, 3.E
2.06	Subtracting Strategically Subtracting Using Strategies Based on Properties of Operations and Place Value Compare 2 subtraction strategies and use them both to determine differences.	3.4.A, 3.4.F Process TEKS: 3.1.B, 3.1.C, 3.1.D, 3.1.F	1.E, 2.C, 2.D, 2.E, 2.F, 4.D, 4.F
2.07	Representing With Number Lines Representing One-Step Addition and Subtraction Problems With Number Lines Use number line representations to make sense of addition and subtraction story problems.	3.5.A Process TEKS: 3.1.D, 3.1.E	1.E, 2.B, 2.D, 2.E, 2.F, 3.A, 3.E
Sub-unit	2: Solving Two-Step Problems		
2.08	Two-Step Story Problems Solving Two-Step Story Problems Involving Addition and Subtraction	3.4.A, 3.5.A Process TEKS: 3.1.E, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F
	Relate story problems to strip diagram representations and equation representations and solve.		
2.09	Representing Two-Step Story Problems Using Strip Diagrams, Number Lines, and	3.4.A, 3.5.A	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.E,

	Equations to Add and Subtract Analyze two-step story problems and represent using diagrams, number lines, and equations.	Process TEKS: 3.1.C, 3.1.D, 3.1.E, 3.1.G	3.F
2.10	Which Strategy? Solving Two-Step Story Problems Involving 1 Operation With Fluency Apply known strategies to solve two-step addition and subtraction problems, selecting the strategy that is most efficient.	3.4.A Process TEKS: 3.1.B, 3.1.C, 3.1.D	1.E, 2.B, 2.C, 2.D, 2.E, 2.F
2.11	Through the Lens of Numbers Solving Two-Step Problems Involving 2 Operations With Fluency Solve two-step problems that involve both addition and subtraction.	3.4.A Process TEKS: 3.1.C, 3.1.D, 3.1.G	1.C, 1.E, 2.C, 2.D, 2.E, 2.F, 4.C, 4.D, 4.F
Sub-unit	3: Place Value Relationships Through 100,000		
2.12	Base-Ten Builders Exploring Place Value up to 9,999 Build numbers to recognize 10 hundreds make 1 thousand and develop a sense of numbers up to 9,999.	3.2.A, 3.2.B Process TEKS: 3.1.E	1.E, 1.F, 2.B, 2.D, 2.E, 2.F, 3.F
2.13	Numbers up to 100,000 Composing and Decomposing Numbers up to 100,000 Write numbers up to the hundred thousands in standard form and in words.	3.2.A Process TEKS: 3.1.C, 3.1.D, 3.1.F, 3.1.G	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.C, 3.F, 3.H
2.14	A New Representation Using Expanded Notation to Represent the Relationship Between Digits Represent, relate, and identify numbers in words, standard form, expanded form, and expanded notation.	3.2.A, 3.2.B Process TEKS: 3.1.D, 3.1.E	1.B, 1.D, 1.E, 2.B, 2.D, 2.E, 2.F, 3.C, 3.D, 3.E, 3.F, 3.H
2.15	Ten Times as Much Describing Place Value Relationships Recognize and describe the relationship between place values as 10 times as many.	3.2.A, 3.2.B Process TEKS: 3.1.F, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 4.D, 4.F
2.16	Which Is Greater? Comparing Multi-Digit Numbers Compare multi-digit numbers using place value reasoning and record comparisons using the <, >, and = symbols.	3.2.D Process TEKS: 3.1.F, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F
2.17	Greatest and Least Comparing and Ordering Multi-Digit Numbers Using Place Value and Symbols	3.2.D Process TEKS: 3.1.E, 3.1.F,	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 4.C, 4.D, 4.F

			0.1.0	
	Compare and order multi a set.	-digit numbers and identify the greatest and least numbers in	3.1.G	
Sub-unit	4: Rounding Within 100,	000		
2.18	Nearest on a Number Li Hundred	ine Using Number Lines to Reason About the Nearest	3.2.C Process TEKS: 3.1.D, 3.1.F	1.B, 1.E, 2.B, 2.E, 2.F, 3.D, 3.F
	Locate numbers on numbers and multiples of 100.	ber lines to consider the distance between three-digit numbers		
2.19	Close Catch Using Nu	mber Lines to Reason About the Nearest Ten	3.2.C	1.B, 1.E, 2.B, 2.E, 2.F
	Identify the nearest ten to value reasoning.	o a given number within 1,000 using number lines or place	Process TEKS: 3.1.F	
2.20	the Nearest Thousand	Ten Thousands Using Number Lines to Reason About or Ten Thousand ber lines to consider the distance between multi-digit	3.2.C, 3.4.A Process TEKS: 3.1.C, 3.1.D, 3.1.E	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 4.D, 4.F
2.21	Identify the nearest ten o	nding to the Nearest Ten or Hundred to Determine Solutions or hundred for numbers within 1,000, using the convention of ers are exactly in the middle of 2 tens or 2 hundreds.	3.4.B Process TEKS: 3.1.G	1.B, 1.D, 1.E, 2.B, 2.E, 2.F, 3.D, 3.E, 3.F, 4.C, 4.D, 4.F
2.22	Does It Make Sense? (Nearest Ten or Hundred	Checking Reasonableness Through Rounding to the	3.4.A, 3.4.B Process TEKS: 3.1.C, 3.1.F,	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A, 3.C, 3.E, 3.F, 3.G, 3.H, 4.D, 4.F
	Assess the reasonablene strategies, such as menta	ess of answers to two-step problems by using estimation al math and rounding.	3.1.G	
Unit 3	: Relating Multipli	cation to Division		
Lesson	Title	Concepts, Knowledge and Skills	TEKS	ELPS
Sub-unit	1: What Is Division?			
3.01	Explore: Packing Up Perboxes?	ppers How can Mateo's peppers be packed equally into	Building Toward 3.4.H Process TEKS: 3.1.A, 3.1.B	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.D, 3.F
	Determine which total an	nounts can be divided equally in multiple ways.		
	-		-	

3.02	Representing Division Representing Division Situations Interpret and relate drawings and expressions to division situations and represent division situations using objects.	Building Toward 3.4.H Process TEKS: 3.1.D	1.B, 1.E, 1.F, 2.B, 2.E, 3.D, 3.E, 3.F, 4.F
3.03	Family Dinner Representing and Solving One-Step Division Problems With Arrays Represent and solve division problems using arrays.	3.4.H, 3.4.K, 3.5.B Process TEKS: 3.1.A, 3.1.C, 3.1.D, 3.1.E	1.A, 1.B, 1.C, 1.D, 1.E, 2.B, 2.C, 2.D, 2.E, 3.E
3.04	Representing and Solving Representing and Solving One-Step Division Problems With Strip Diagrams and Equations Represent and solve one-step division problems using strip diagrams and equations.	3.4.K, 3.5.B Process TEKS: 3.1.C, 3.1.D	1.E, 2.B, 2.C, 2.D, 2.E, 2.F
3.05	Two-Step Division Problems Representing and Solving Two-Step Division Problems Represent and solve two-step division problems.	3.4.K, 3.5.B Process TEKS: 3.1.A, 3.1.E	1.E, 2.B, 2.D, 2.E, 2.F, 3.A, 3.C, 3.E, 3.F
3.06	Even or Odd? Using Divisibility Rules to Determine Even and Odd Numbers Represent numbers using equal groups of 2 to determine whether they are even or odd.	3.4.I Process TEKS: 3.1.C, 3.1.D, 3.1.G	1.D, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 4.C, 4.D, 4.F
ub-unit	2: Relating Multiplication and Division	'	
3.07	It's Chili in Here! Recognizing Division as an Unknown-Factor Problem Represent the same situation with a multiplication equation and a division equation.	3.5.D, Building Toward 3.4.J Process TEKS: 3.1.D, 3.1.F	1.C, 1.E, 2.B, 2.D, 2.E, 2.F
3.08	Division and Multiplication Equations Using Multiplication and Division to Solve Problems Write equations to represent and solve equal- groups situations.	3.4.F, 3.4.J, 3.5.D Process TEKS: 3.1.C, 3.1.D, 3.1.F	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.F, 3.G
3.09	Relating Quotients to Familiar Products Using Familiar Facts to Identify Unknown Factors Practice and identify known one-digit multiplication facts and their related division facts.	3.4.F Process TEKS: 3.1.C, 3.1.D, 3.1.F	1.C, 1.E, 2.C, 2.D, 2.E, 2.F
Sub-unit	3: Multiplying Larger Numbers		
3.10	Composing Rectangles Using Rectangles to Explore the Distributive Property	3.4.E	1.B, 1.D, 1.E, 2.B, 2.D, 2.E, 2.F,

esson	Title	Concepts, Knowledge and Skills	TEKS	ELPS
_	: Fractions as Numl			
3.17		epresenting and Solving Two-Step Story Problems ep problems involving a combination of addition, ion.	3.4.K, 3.5.B Process TEKS: 3.1.A, 3.1.B, 3.1.F, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A 3.C, 3.D, 3.F, 3.G, 3.H
3.16	Multiplying One- and Two- Multiplication Problems Multiply within 100 using the	Digit Numbers Using the Standard Algorithm to Solve	3.4.G Process TEKS: 3.1.B, 3.1.C, 3.1.D	1.E, 1.F, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A, 3.E
3.15	Multiplication	ter Than 20 Introducing the Standard Algorithm for factor is greater than 20 using strategies, including the	3.4.F, 3.4.G Process TEKS: 3.1.C, 3.1.D, 3.1.F	1.C, 1.E, 1.F, 2.B, 2.C, 2.D, 2.E 2.F, 3.G
3.14	Numbers	n Solving Multiplication Problems Involving Teen nvolving multiplication within 100, where 1 factor is a teen	3.4.G, 3.4.K, 3.5.B Process TEKS: 3.1.E, 3.1.F, 3.1.G	1.C, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F 3.D, 3.F, 3.G
3.13	Multiplying Teen Numbers Multiply a one-digit number	s Multiplying a One-Digit Number by a Teen Number by a teen number.	3.4.G, 3.4.K Process TEKS: 3.1.E, 3.1.F, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.E 3.E, 3.F
3.12		Multiplying a One-Digit Number by Multiples of 10 mbers by multiples of 10 using strategies based on place operations.	3.4.F, 3.4.G Process TEKS: 3.1.C, 3.1.F	1.B, 1.E, 1.F, 2.B, 2.C, 2.D, 2.E 3.D, 3.E, 3.F
3.11		king Equal Groups of Rectangles to Determine the Area ies and represent them with expressions to determine the duct of an expression.	3.4.E Process TEKS: 3.1.F, 3.1.G	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 3.E 3.F, 4.C, 4.D, 4.E, 4.F
	Explore the Distributive Pro	perty using rectangles.	Process TEKS: 3.1.F, 3.1.G	3.A, 3.D, 3.E, 3.F

4.01	Explore: Making Parts and Wholes What is the relationship between parts and a whole?	Building Toward 3.6.E Process TEKS: 3.1.A, 3.1.B,	1.E, 2.B, 2.E, 2.F, 3.D, 3.F
	Create and describe whole composite shapes and their parts.	3.1.D, 3.1.F	
4.02	What Is Fraction Notation? Introducing Fraction Notation	3.3.A Process TEKS: 3.1.D, 3.1.F,	1.E, 2.C, 2.D, 2.E, 2.F, 3.C, 3.D, 3.F
	Represent halves, thirds, fourths, sixths, and eighths using fraction strips and fraction notation.	3.1.G	3.1
4.03	One Part Wonder Decomposing Two Congruent Figures Into Unit Fractions	3.3.C, 3.6.E	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F,
	Partition 2 congruent figures into equal parts and label each part with a unit fraction.	Process TEKS: 3.1.D, 3.1.F, 3.1.G	3.D, 3.E, 3.F, 4.C, 4.D, 4.F
4.04	More Than One Part Representing Non-Unit Fractions With Strip Diagrams	3.3.A	1.B, 1.E, 2.B, 2.D, 2.E, 2.F, 3.E,
	Represent non-unit fractions using strip diagrams and writing non-unit fractions.	Process TEKS: 3.1.E	3.F, 4.C, 4.D, 4.F
4.05	Fraction Tour Partitioning Objects Among Two or More Recipients	3.3.A, 3.3.E	1.E, 2.B, 2.D, 2.E, 2.F, 3.D, 3.F,
	Partition sets of objects into equal groups and represent the number of equal groups as a fraction.	Process TEKS: 3.1.A, 3.1.D	4.D, 4.F
4.06	What Parts? How Many Parts? Composing and Decomposing Fractions Into a Sum of Unit Fractions	3.3.D Process TEKS : 3.1.E, 3.1.F	1.E, 2.C, 2.E, 2.F, 3.E
	Represent non-unit fractions as a sum of unit fractions.		
Sub-unit	2: Fractions on the Number Line		
4.07	To the Number Line Representing Fractions Less Than 1 on a Number Line	3.3.A	1.E, 2.C, 2.D, 2.E, 2.F, 3.C, 3.D,
	Explore number lines showing different intervals and partition the interval from 0 to 1 into equal parts to locate unit fractions.	Process TEKS: 3.1.E, 3.1.F, 3.1.G	3.E, 3.F
4.08	More Fractions on the Number Line Representing Fractions on a Number Line as a Distance From Zero	3.3.A, 3.7.A Process TEKS: 3.1.D, 3.1.F	1.E, 2.C, 2.D, 2.E, 2.F, 3.D, 3.F
	Represent fractions less than 1 as distances from 0 on a number line.		
4.09	It's All About Location Determining Fractions on a Number Line	3.3.A, 3.3.B, 3.3.D	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.D,
	Determine the fraction represented by a given point on the number line.	Process TEKS: 3.1.B, 3.1.E, 3.1.F	3.E, 3.F, 3.G, 4.D, 4.F

4.10	0-t 0i (0-ti1)	Frankings Faul to Whale Numbers	Building Toward 3.3.F	1.B, 1.E, 2.B, 2.D, 2.E, 2.F
4.10		Fractions Equal to Whole Numbers	Process TEKS: 3.1.E, 3.1.F	1.0, 1.L, 2.0, 2.0, 2.L, 2.1
		n the same place as whole numbers on the number line.		
Sub-unit	3: Equivalent Fractions			
4.11	Obita's Quilts Identifying	Equivalent Fractions Using Models	3.3.F	1.A, 1.B, 1.C, 1.E, 1.F, 2.B, 2.C,
	Explore fraction equivalend area.	by by sorting and matching fractions that represent the same	Process TEKS: 3.1.D, 3.1.F	2.D, 2.E, 2.F, 3.B, 3.C, 4.A, 4.B
4.12	Generating Equivalent Fra	actions Equivalent Fractions Using Fraction Strips	3.3.F, 3.4.F	1.C, 1.E, 2.C, 2.D, 2.E, 2.F, 3.D,
	Use fraction strips to deter equivalent fractions.	mine whether fractions are equivalent and generate	Process TEKS: 3.1.C, 3.1.D, 3.1.E	3.F
4.13	Line-Up Representing Ed	quivalent Fractions on a Number Line	3.3.F, 3.3.G	1.C, 1.E, 2.B, 2.C, 2.E, 2.F, 3.D,
	Use the number line to dete	ermine whether fractions are equivalent and generate	Process TEKS: 3.1.E, 3.1.G	3.F
Sub-unit	4: Fraction Comparisons			
4.14	Seams About Right Com	nparing Unit Fractions With Objects, Words, and Models	3.3.H, 3.4.J	1.E, 2.C, 2.D, 2.E, 2.F, 3.C, 3.D,
	Explore comparison with u	nit fractions.	Process TEKS: 3.1.C, 3.1.D	3.F
4.15	Same Number of Parts (Symbols	Comparing Fractions With the Same Numerator Using	3.3.H Process TEKS: 3.1.F	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.D, 3.F, 4.D, 4.F
	Compare fractions with the symbols.	e same numerator and different denominators using		
4.16	Ruby the Red Panda Cor Denominator	mparing 2 Fractions With the Same Numerator or	3.3.H Process TEKS: 3.1.C, 3.1.F	1.B, 1.C, 1.F, 2.B, 2.E, 3.F
	Compare fractions with the	e same numerator or denominator.		
Unit 5	: Measurement and	Financial Literacy		
Lesson	Title	Concepts, Knowledge and Skills	TEKS	ELPS
Sub-unit	1: Weight, Mass, and Liqu	id Volume		
5.01	Explore: Egg-cellent Object	cts How can you compare weights?	Building Toward 3.7.E	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.C,

	Describe and compare the weights of objects at the fair using precise mathematical language.	Process TEKS: 3.1.A, 3.1.B, 3.1.F, 3.1.G	3.D, 3.F
5.02	How Much Does It Weigh? Measuring Weight in Ounces, Pounds, and Tons Determine the weight in ounces, pounds, and tons.	3.7.E Process TEKS: 3.1.A, 3.1.B, 3.1.F, 3.1.G	1.B, 2.B, 2.C, 2.D, 2.E, 2.F, 3.C, 3.D, 3.E, 3.F
5.03	Balance It Out Measuring Mass in Milligrams, Grams, and Kilograms Measure and determine the mass of animals.	3.4.A Process TEKS: 3.1.C, 3.1.E	1.B, 2.B, 2.E, 3.C, 3.D, 3.E, 3.F
5.04	Measuring Liquids Introducing Liquid Volume Determine liquid volumes of containers using metric units.	3.7.E Process TEKS: 3.1.B	1.B, 1.E, 1.F, 2.B, 2.C, 2.D, 2.E, 3.C, 3.D, 3.E, 3.F
5.05	xHow Much Liquid Does It Hold? Using Customary Units to Determine Liquid Volume and Tools That Measure Capacity Estimate and measure liquid volumes of containers in customary units.	3.7.E Process TEKS: 3.1.C, 3.1.F, 3.1.G	1.B, 1.E, 2.B, 2.D, 2.E, 3.C, 3.D, 3.E, 3.F, 3.G
5.06	Fair Questions Determining Whether to Use Weight or Liquid Volume Measurements Make sense of situations involving liquid volume and weight to determine which measurement is appropriate.	3.4.K, 3.5.A, 3.5.B, 3.7.D Process TEKS: 3.1.A, 3.1.B, 3.1.F, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F
Sub-unit	2: Problems Involving Time		
5.07	Chicken Time Representing and Solving Problems Involving Start and End Times Solve problems with an unknown start time or end time.	3.7.C Process TEKS: 3.1.A, 3.1.B, 3.1.C, 3.1.F	1.E, 2.B, 2.D, 2.E, 2.F
5.08	All Kinds of Time Adding and Subtracting Intervals of Time Use tools and models to add and subtract intervals of time.	3.4.A, 3.7.C Process TEKS: 3.1.A, 3.1.C, 3.1.D, 3.1.G	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F
Sub-unit	3:Counting, Spending, and Saving Money		
5.09	Real-World Relationships Representing Real-World Relationships in a Table Identify and explain the relationship between values in a real-world situation.	3.5.E Process TEKS: 3.1.A, 3.1.B, 3.1.D, 3.1.E, 3.1.F, 3.1.G	1.E, 2.B, 2.C, 2.D, 2.E, 2.F, 3.E
5.10	Money Adventures at the County Fair! Counting a Collection of Coins and Bills	3.4.C Process TEKS: 3.1.A, 3.1.B,	1.B, 2.B, 2.C, 2.D, 2.E, 3.E, 3.F, 4.C, 4.D, 4.F

	Use a variety of strategies to count a collection of coins and bills beyond one dollar.	3.1.C, 3.1.D, 3.1.F, 3.1.G	
5.11	How Much Money? Exploring Factors That Affect Income and the Prices of Resources Apply understanding of numerical relationships represented in a table to understand the effect of resource availability on cost.	3.4.C, 3.9.A, 3.9.B Process TEKS: 3.1.A, 3.1.B, 3.1.F, 3.1.G	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 3.E 3.F, 4.C, 4.D, 4.F
5.12	Spending Decisions Identifying Costs and Benefits of Spending Decisions, Including Credit Identify advantages and disadvantages of planned and unplanned spending, including credit and interest.	3.5.E, 3.9.C, 3.9.D Process TEKS: 3.1.A, 3.1.B, 3.1.F, 3.1.G	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F 3.E, 3.F
5.13	Considering It All Making Decisions About Income Identify decisions involving income, spending, saving, credit, and charitable giving.	3.5.E, 3.9.E, 3.9.F Process TEKS: 3.1.A, 3.1.B, 3.1.G	1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 2.F 3.C, 3.F, 4.C, 4.D, 4.F
Unit 6:	Sorting and Classifying Shapes		
Lesson	Title Concepts, Knowledge and Skills	TEKS	ELPS
Sub-unit	1: Sorting and Classifying Two- and Three-Dimensional Shapes		
6.01	1: Sorting and Classifying Two- and Three-Dimensional Shapes Explore: Sorting Shapes How can you categorize shapes? Describe and sort two- and three-dimensional shapes based on their attributes.	Building Toward 3.6.A Process TEKS: 3.1.A, 3.1.B, 3.1.D, 3.1.F	1.E, 2.B, 2.E, 2.F, 3.C, 3.D, 3.E, 3.F
	Explore: Sorting Shapes How can you categorize shapes?	Process TEKS: 3.1.A, 3.1.B,	
6.01	Explore: Sorting Shapes How can you categorize shapes? Describe and sort two- and three-dimensional shapes based on their attributes. A New Shape Sorting and Classifying Prisms Sort and classify prisms to understand how their unique attributes compare with	Process TEKS: 3.1.A, 3.1.B, 3.1.D, 3.1.F 3.6.A Process TEKS: 3.1.B, 3.1.F,	3.F 1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 3.C

6.05	Exploring New Quadrilaterals Using Attributes to Recognize Trapezoids, Parallelograms, and Rhombuses Describe attributes of quadrilaterals to determine attributes that define a shape.	3.6.A, 3.6.B Process TEKS: 3.1.B, 3.1.E, 3.1.F, 3.1.G	1.A, 1.B, 1.E, 2.B, 2.C, 2.D, 2.E, 3.B, 3.C, 3.E, 3.G, 4.A, 4.B, 4.C, 4.D, 4.F
6.06	More Quadrilaterals Drawing and Classifying Examples and Non-Examples of Quadrilaterals Draw and classify quadrilaterals by their attributes and their most specific name.	3.6.A, 3.6.B Process TEKS: 3.1.B, 3.1.E, 3.1.F	1.E, 2.C, 2.D, 2.E, 2.F, 3.F, 4.D, 4.F
Sub-unit	2: Determining Perimeter	'	
6.07	Distance Around Shapes Building Concepts of Perimeter Measure the total distance around shapes and determine the perimeter.	3.7.B Process TEKS: 3.1.B, 3.1.E, 3.1.F	1.A, 1.B, 1.C, 1.E, 2.B, 2.D, 2.E, 3.E, 3.F
6.08	Perimeters of Different Shapes Determining the Perimeters of Shapes Given All or Some of the Side Lengths Apply attributes of shapes to calculate perimeter, even when some side lengths are not given.	3.6.B, 3.7.B Process TEKS: 3.1.B, 3.1.E, 3.1.F	1.B, 1.C, 1.E, 2.B, 2.C, 2.E, 2.F
6.09	Solving Perimeter Problems Solving Real-World Problems Involving an Unknown Length When Given the Perimeter Determine unknown side lengths when given the perimeter of a shape.	3.4.F, 3.4.G, 3.7.B Process TEKS: 3.1.A, 3.1.B, 3.1.C, 3.1.D,3.1.E, 3.1.F	1.E, 2.C, 2.D, 2.E, 2.F, 3.F, 3.G, 3.H