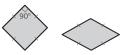
Sub-Unit 1 | Summary

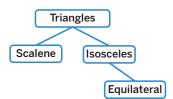
In this sub-unit . . .

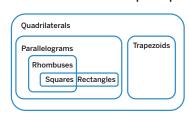
 We sorted and classified quadrilaterals and triangles into categories based on their attributes.

Triangles


- 3 equal sides
- · no equal sides
- 3 acute angles
- · obtuse angle

- · 4 sides that are · unequal sides
 - equal in length · no sets of
- 2 sets of parallel sides



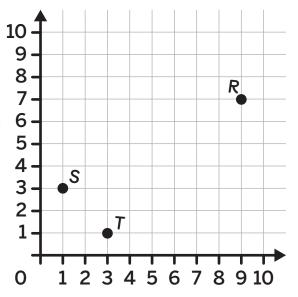

This triangle is an isosceles triangle because it has 2 equal side lengths

This quadrilateral is a rhombus because it has 2 sets of parallel sides and four equal side lengths.

 We classified two-dimensional figures using graphic organizers, based on their attributes and properties.

Math tip: While equilateral triangles can be classified as isosceles, equilateral is their most precise name. Trapezoids are not parallelograms because they have only 1 set of parallel sides.

Sub-Unit 2 | Summary

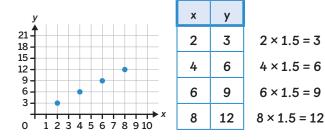

In this sub-unit . . .

We plotted and identified points on the coordinate grid.

What are the **coordinates** of point *R*?

(9, 7)

Graph and label point S at (1, 3) and point T at (3, 1).


- **Math tip:** Order matters when graphing! Point *S* and point *T* contain the same numbers in the ordered pair, but are located at different points on the coordinate grid.
- We described the key attributes of the coordinate grid and the process for graphing ordered pairs.
 - In an **ordered pair** (*x*, *y*), the *x*-coordinate represents how far to move horizontally on the *x*-axis.
 - The y-coordinate represents how far to move vertically on the y-axis.
 - When points are located on a vertical line, they have the same **x-coordinate**.
 - When points are located on a horizontal line, they have the same y-coordinate.

Sub-Unit 3 | **Summary**

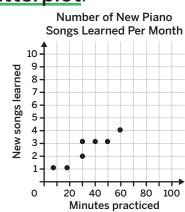
In this sub-unit . . .

 We recognized the difference between additive and multiplicative patterns given in tables and graphs.

	у	Х
4 + 22 = 26	26	4
5 + 22 = 27	27	5
6 + 22 = 28	28	6
7 + 22 = 29	29	7

additive relationship

multiplicative relationship


 We generated and graphed numerical patterns when given a rule in the form of an equation.

$$y = x + 2$$

x-value	<i>y</i> -value	ordered pair	
0	2	(0, 2)	0 + 2 = 2
1	3	(1, 3)	1+3=4
2	4	(2, 4)	2 + 2 = 4
3	5	(3, 5)	3 + 2 = 5
4	6	(4, 6)	4 + 2 = 6

- **Math tip:** Each x-value represents an x-coordinate. Each y-value represents a y-coordinate. Together, they form an ordered pair (x, y).
- We represented data on a <u>scatterplot</u>.

Ordered Pairs (10, 1) (20, 1) (30, 2) (30, 3) (40, 3) (50, 3) (60, 4)

