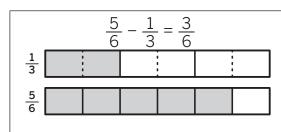
Sub-Unit 1 | Summary

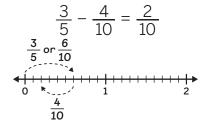
In this sub-unit . . .

 We converted between metric units and between customary units. We saw that we can use powers of 10 to convert between metric units, but not between customary units.

Convert from larger to smaller unit	Convert from smaller to larger unit
90 km = 90,000,000 mm	26,400 ft = 8,800 yd
1 km = 1,000 m	3 ft = 1 yd
90 × 1,000 = 90,000	26,400 ÷ 3 = 8,800
1 m = 1,000 mm	or
90,000 × 1,000 = 90,000,000,000	$26,400 \times \frac{1}{3} = \frac{26,400}{3}$ = 8,800

- **Math tip:** When converting from a smaller unit to a larger unit, you can divide by a number greater than 1 or multiply by a number less than 1.
- We solved multi-step problems involving unit conversions.


5 volunteers each mixed 4.5 liters of nectar with 3,800 milliliters of water. How many total liters of nectar mixture did they make?


Strategy A	Strategy B
3,800 ÷ 1,000 = 3.8, so 3.8 liters	5 × 4.5 = 22.5, so 22.5 liters 5 × 3,800 = 19,000, so 19,000 milliliters
4.5 + 3.8 = 8.3, so 8.3 liters	19,000 ÷ 1,000 = 19, so 19 liters
8.3 × 5 = 41.5, so 41.5 liters	22.5 + 19 = 41.5, so 41.5 liters

Sub-Unit 2 | Summary

In this sub-unit . . .

 We used objects and models to add and subtract fractions with unequal denominators.

 We created common denominators to add and subtract fractions with unequal denominators.

Rename 1 fraction

$$4\frac{3}{4} - 3\frac{11}{12} = \frac{10}{12}$$

$$\frac{3\times3}{4\times3}=\frac{9}{12}$$

$$4\frac{9}{12} = 3\frac{21}{12}$$

$$3\frac{21}{12} - 3\frac{11}{12} = \frac{10}{12}$$

Rename both fractions

$$\frac{3}{5} + \frac{5}{8} = \frac{49}{40}$$

$$\frac{3\times8}{5\times8}=\frac{24}{40}$$

$$\frac{5\times5}{8\times5}=\frac{25}{40}$$

$$\frac{24}{40} + \frac{25}{40} = \frac{49}{40}$$

$$\frac{3}{4} - \frac{7}{10} = \frac{1}{20}$$

$$\frac{3\times5}{4\times5}=\frac{15}{20}$$

$$\frac{7\times2}{10\times2}=\frac{14}{20}$$

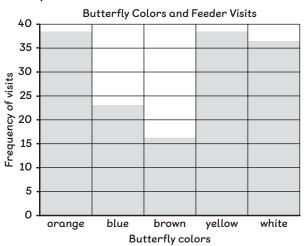
$$\frac{15}{20} - \frac{14}{20} = \frac{1}{20}$$

$$\frac{14}{8} + \frac{9}{12} = \frac{10}{4}$$

$$\frac{14 \div 2}{8 \div 2} = \frac{7}{4}$$

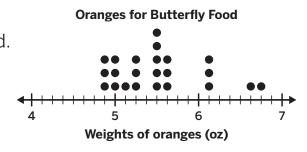
$$\frac{9 \div 3}{12 \div 3} = \frac{3}{4}$$

$$\frac{7}{4} + \frac{3}{4} = \frac{10}{4}$$


Math tip: When 1 denominator is a multiple of the other, you can rename the other fraction using that denominator.

Sub-Unit 3 | Summary

In this sub-unit . . .


 We represented data using frequency tables, bar graphs, dot plots, and stem-and-leaf plots.

Butterfly color	Frequency of visits
orange	39
blue	23
brown	16
yellow	39
white	36

 We represented and solved one- and two-step problems using data involving fractions from frequency tables, bar graphs, dot plots, or stem-and-leaf plots.

The dot plot shows the weights of oranges used for butterfly food. What is the difference between the heaviest and lightest orange in ounces?

$$6\frac{6}{8} - 4\frac{7}{8} = 2\frac{6}{8} - \frac{7}{8} = 1\frac{14}{8} - \frac{7}{8} = 1\frac{7}{8}$$

$$1\frac{7}{8} \text{ ounces}$$