

Statistics is the science of collecting and analyzing data. It is one of the most relevant aspects of mathematics in everyday life, and it is also used by researchers in many fields, such as sociologists identifying and studying problems in society. In all cases, knowing what is typical is critical to understanding what is not.

Essential Questions

- What are statistical questions and how are they used?
- What are different ways to represent numerical data?
- How do we measure the center of a data set?
- How do we measure the spread of a data set?

You can use surveys and measurements to collect data to answer questions about a topic. This data can be either <u>categorical data</u> or <u>numerical data</u>. Categorical data can be sorted into categories. Numerical data are numbers, quantities, or measurements that can be meaningfully compared. Some data that contain numbers, like addresses or dates, are categorical because the numbers are not quantities or measurements.

Here are some examples.

Categorical Data

- Favorite color
- · Food people eat for lunch
- People's phone numbers

Numerical Data

- Number of people in each class
- Weights of dogs
- · Ages of people in your school

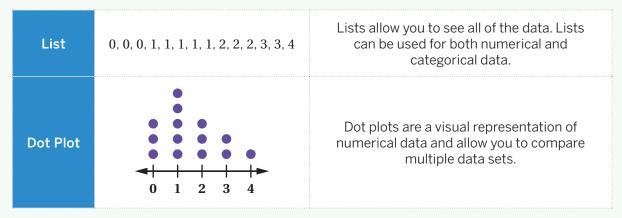
Try This

Antwon asked his friends the following question: How many hours do you spend on your phone each week?

Here is the data he collected.

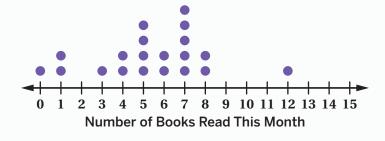
 	•	 	 .	 **************************************

- Antwon claims that most of his friends use their phone for 3 or more hours each day.


 Do you agree? Explain your thinking.
- **b** Antwon also asked his friends: *Do you have more than 2 pets?*Will this question produce numerical data or categorical data? Explain your thinking.

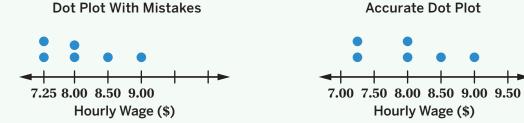
A **statistical question** is a question that needs more than one piece of data to answer it.

Here is an example:


- "Which classroom in your school has the most books?" is a statistical question because you need to know the number of books in each classroom to answer it.
- "How many books are in your classroom?" is not a statistical question because you only need to know the number of books in *one* classroom to answer it.

You can organize data that answers a statistical question into a list or a **dot plot**.

Try This

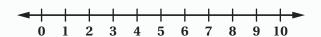

This dot plot shows the number of books that 20 students in a 6th grade class read in one month.

- **a** What do the 2 dots plotted at 4 tell us about this situation?
- **b** Julian claims that most students in the class read 6 books or less this month. Do you agree with him? Explain your thinking.

You can use dot plots to visualize data and compare different data sets. When creating a dot plot it is important to use a consistent scale on the number line and a consistent amount of vertical space between the dots.

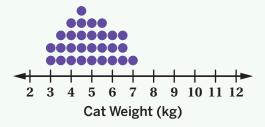
Here is an example of two dot plots showing the same set of data, one with mistakes and one done accurately.

Notice:

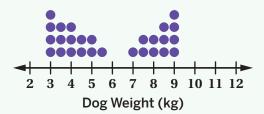

- The scale of the dot plot with mistakes is inconsistent, but the scale of the accurate dot plot is consistent with \$0.50 between each tick mark.
- The height of the dots above \$7.25 and \$8.00 should be the same because there are the same number of dots above each.

Try This

Zola asked 8 of their friends: How many hours did you work in the school store this week?

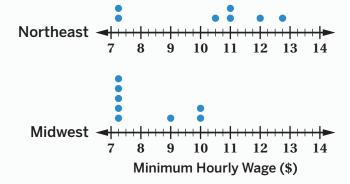

They collected the responses in this table.

Make a dot plot using this data.



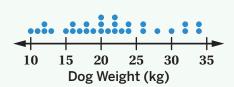
You can use <u>center</u>, <u>spread</u>, and <u>shape</u> to describe the distribution of data on a dot plot. The center is a number that represents a typical value. The spread describes how alike or different the values in a distribution are, often in relation to the center.

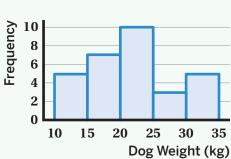
Here are some examples.


- The data is symmetric.
- There are no gaps in the data.
- The center of the data is between 4 and 5 kilograms.
- Most of the data is clumped together.
- The data is shaped like a mountain with the most dots on 4.5 kilograms.

- There is a gap in the data between 5.5 and 7 kilograms.
- The data is spread out in two clumps, one with a peak at 3 kilograms and another peak at 9 kilograms.
- The center of the data is approximately 6 kilograms.
- The data is shaped like two triangles with the most dots on 3 kilograms and 9 kilograms.

Try This

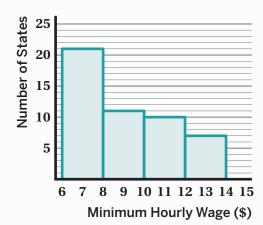

Here are dot plots that show the minimum wages of states in two different parts of the U.S.


- a Which dot plot has a larger spread?
- **b** What do these dot plots tell us about minimum wages in different parts of the U.S.?

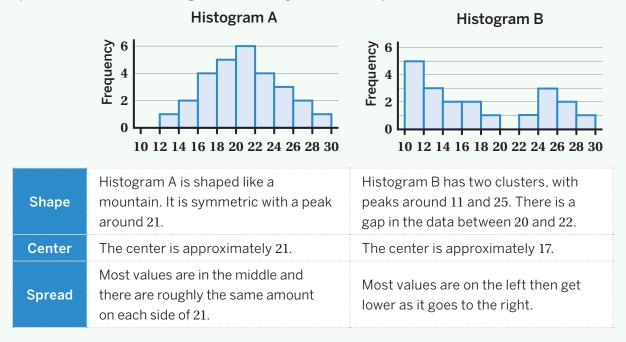
You can use dot plots and <u>histograms</u> to visualize numerical data. Here is an example of a data set of the weights of 30 dogs presented in a dot plot and in a histogram.

Dot Plot

Histogram


In a histogram, data values are grouped into bins that cover a range of values, and each **bin** has the same width. The height of each bar represents the total number of values in that range, including the left boundary (least value) but excluding the right boundary (greatest value). For example, the height of the tallest bar, from 20 to 25, represents weights of 20 kilograms up to (but not including) 25 kilograms.

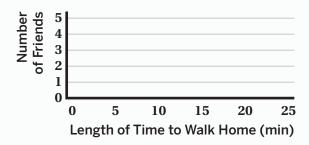
Try This


Here is a histogram that shows minimum wages in the U.S. in 2020.

- A How many states have a minimum wage of less than \$10.00?
- **b** Michigan has a minimum wage of \$10.33. Which bin should it go into?
- **c** Adriana claims that this histogram represents the minimum wages of 4 different states.

Is her claim correct? Explain your thinking.

You can use histograms to compare numerical data sets using their shape, center, and spread. Here are two histograms with very different shapes and features.



Try This

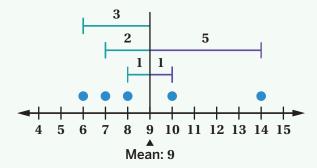
Marco recorded how many minutes it takes each of his friends to walk home from school.

22	5.5	13	20	12
3	18	21.5	5	13

Create a histogram of this data.

A <u>statistic</u> is a single number that measures something about a data set. One way to measure the center of a data set is by determining the <u>mean</u>, or average, of all the data values. You can think of the mean as "an equal share."

For example, suppose this data set represents how many liters of water are in 5 bottles: 1, 4, 2, 3, 0. To calculate the mean, you first add up all of the values to determine the total (10 liters), then divide that sum by the number of values (5 bottles). This example can be represented by the expression $(1 + 4 + 2 + 3 + 0) \div 5$, or $10 \div 5$. So, the mean amount of water in the 5 bottles is 2 liters (per bottle). The mean is a whole number in this example, but it is possible for the mean to be a decimal number.

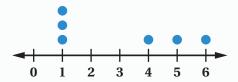

Try This

Six friends played games together at the Fly-Score Arcade.

Here are the number of tickets that each friend won.

- a Calculate the mean number of tickets for this data. Show your thinking.
- **b** What does the mean tell us about this situation?

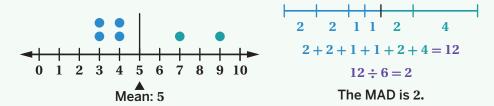
The distance between a data point and the mean is called an <u>absolute deviation</u>. For example, the dot plot below shows a data set with a mean of 9. The absolute deviation of the point at 14 is 5 because 14 is 5 units away from 9.



The sum of the absolute deviations to the right of the mean is equal to the sum of the absolute deviations to the left of the mean. You can use this to check whether a number is the mean of a data set. For example, if 9 is the correct mean of the data set shown, the sum of the absolute deviations to the left of 9 should be equal to the sum on the right side.

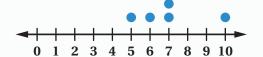
- The sum of the deviations on the left is 3 + 2 + 1 = 6.
- The sum of the deviations on the right is 5 + 1 = 6.
- The sums are equal so 9 is the correct mean.

Try This


Ava made a dot plot to show how many bubbles she and her friends popped in two seconds.

Ava says the mean of this data is 2. Is her statement correct?

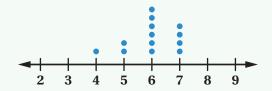
Use absolute deviations to show or explain your thinking.


You can describe how spread out the values in a data set are with a single number, the **mean absolute deviation (MAD)**. The MAD is calculated by determining the mean of the absolute deviations (i.e., the average of the distances between each data value and the mean).

The mean absolute deviation is an example of a measure of spread. A measure of spread is a way to measure the consistency of the values in a data set. The smaller the value of the MAD, the less spread out the data points are around the mean, and the more consistent the data is. The larger the MAD, the more spread out the data points are around the mean, and the less consistent the data is.

Try This

Titus made a dot plot to show the number of baskets he made during each round of basketball practice last week.

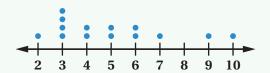


- a Calculate the mean of this data.
- **b** Calculate the MAD of this data.

When comparing two data sets, the mean allows you to compare the average value of each set and the mean absolute deviation (MAD) allows you to compare their spreads.

Here is an example showing the ages of two groups of kids who started learning to read and who started learning to ride a bike.

Learning to Read



Mean: 6 years

MAD: ≈ 0.62 years

- On average, these kids started learning to read around 6 years old, which is older than the mean age for learning to ride a bike.
- The value of the MAD is smaller, meaning the data is less spread out.

Learning to Ride a Bike

Mean: 5 years

MAD: ≈ 1.86 years

- On average, these kids started learning to ride a bike around 5 years old, which is younger than the mean age for learning to read.
- The value of the MAD is greater, meaning the data points are more spread out.

Try This

This table shows the salaries, in millions of dollars, for 8 top-earning women in Hollywood in 2019. The mean of these women's salaries is \$33.7 million.

Calculate the MAD of the data.

Use the table to organize your thinking.

Salaries (in millions)	Absolute Deviations
\$56	
\$44	
\$35	
\$34	
\$28	
\$25	
\$24	
\$23.5	

You can describe a data set using another measure of center called the <u>median</u>. The median is the "middle" value in a data set when the values are listed in order from least to greatest (or greatest to least). Half of the data values are less than or equal to the median, and half of the data values are greater than or equal to the median.

To determine the median from an ordered representation of the data, you can repeat a process of eliminating the pairs of least and greatest values.

Here are some examples.

8 X X (2) 2 A 8

Odd Number of Values

Once all pairs have been eliminated, only one value remains in the middle, making it the median.

Median: 2

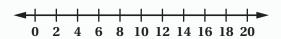
N X X (1 2) 2 A K

Even Number of Values

Once all pairs have been eliminated, two values remain.

Their average is the median.

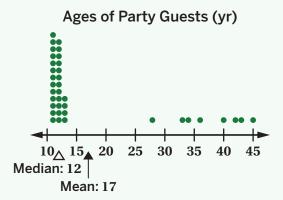
 $(1+2) \div 2 = 1.5$ Median: 1.5


Try This

Jayla launched her toy car 7 times and recorded each distance in inches.

Distances Jayla's car traveled: [5, 6, 17, 19, 9, 20, 18]

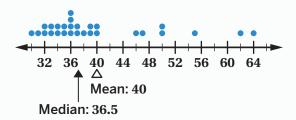
What is the median distance the car traveled?


Create a dot plot if it helps you with your thinking.

You can use mean and median to tell you different things about a data set. One measure might be more appropriate depending on the shape of the data and the situation.

Here is data from a 12-year-old's birthday party. The median of this data set is 12. The mean of this data set is 17. In this situation, the median is a better measure to represent the ages of the party guests because most guests are 11 to 13 years old. The mean has shifted away from where most of the data is because the older ages are added to the younger ages.

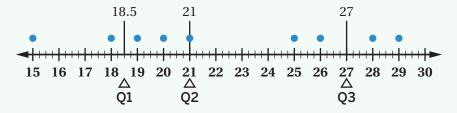
When most of the data is in one place but there are a few data points far away from the group (like in the dot plot shown), the mean and median are likely to be far apart.



Try This

Here is a dot plot that shows the ages of teachers at a school.

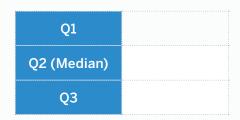
a Is the mean or median a better measure of center to represent the ages of the teachers?

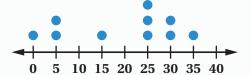

Explain your thinking.

- **b** Why do you think the mean is higher than the median?
- c When are the mean and median likely to be far apart?

You can describe the middle half of a data set by dividing it into four equal sections called **quartiles**.

You can determine the value of the quartiles by splitting the entire data set in half and then splitting the halves again. The middle half is all the data points that are between Q1 and Q3. Representations such as dot plots are helpful for identifying quartiles to describe data sets.


The first quartile (Q1) is the median of the lower half of the data set. The second quartile (Q2) is the median of the entire data set.


The third quartile (Q3) is the median of the upper half of the data set.

Try This

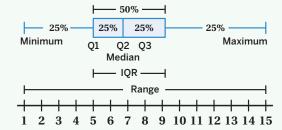
Aki made a dot plot to track how many squirrels their dog chased during 10 separate walks.

Determine the values of Q1, Q2 (median), and Q3.

You can create a **box plot** to visualize a data set. While a box plot shows the same data as a dot plot, it gives us new information about the data. Rather than showing every data point, a box plot separates the data into quartiles.

We can use box plots to describe the spread of the data in two ways.

 The <u>range</u> represents the difference between the maximum and minimum values of a data set. It describes the overall spread of the data.

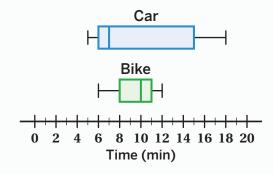

Range: 15 - 1 = 14

• The <u>interquartile range (IQR)</u> represents the range of the middle 50% of the data (between Q3 and Q1). It describes how spread out the middle of the data is.

$$IQR: 9.25 - 6.75 = 2.5$$

Box plots do not show how many data points are in each set, or the values of any individual data points, except the minimum and maximum.

Min.	Q1	Median	Q3	Max.
1	5	6.75	9.25	15



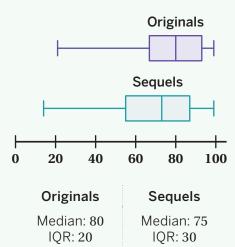
Try This

Keya made box plots to show how long it takes for her to get to school by car and by bike.

- a For each box plot, determine the median, IQR, and range.
- **b** If Keya wants a more predictable way of traveling, should she go to school by car or by bike?

Explain your reasoning.

	Car	Bike
Median		
IQR		
Range		

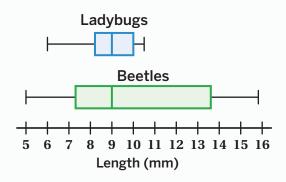

You can make many different claims about data using box plots.

For example, these box plots show data about movie review scores for originals and sequels.

You can use the IQR or the median to make claims about specific information, as well as general trends, including:

- The IQR for originals is 20 and for sequels is 30. This tells us that the middle 50% of the data is more spread out for sequels.
- The median score for originals is higher than the median score for sequels. This tells us that original movies typically had higher review scores than sequels.

Movie Reviews (score of 0-100)



Try This

These box plots represent the length data for a collection of ladybugs and a collection of beetles.

- a Complete the table to estimate the median and IQR of each box plot.
- **b** Compare the IQR of each bug collection.

What do these numbers tell you about the lengths of ladybugs and beetles?

	Median	IQR
Ladybugs		
Beetles		

You can answer statistical questions using statistics and data displays. Here is data about how many hours of movies these students and teachers watched last month.

		Students	;	
0	0	5	10	10
20	25	60	75	100

	;			
0	15	15	20	20
30	30	35	35	40

To make a claim about the movie habits of these students and teachers, you could create data displays like box plots or calculate measures of center (mean or median) and measures of spread (MAD or IQR).

Students	Teachers
Mean: 30.5	Mean: 24
MAD: 28.7	MAD: 10
Median: 15	Median: 25
IQR: 55	IQR: 20

From this data, you might claim that these teachers watched more movies because their median is higher. You might also claim that these students watch more movies because their mean is higher.

Try This

Over a two-week period, Jada and Mai recorded the number of math problems they got for each school day.

Mai thinks that she typically has more math problems than Jada.

Is Mai's thinking correct? Explain your response.

Mai								
2	15	20	0	5				
25	1	0	5	17				

		Jada		
4	0	23	7	5
0	4	10	8	5

Lesson 1

- a Responses vary. I don't agree with Antwon. He has data on how many hours his friends use their phones for the whole week, but he can't tell how many hours they use their phones per day. He should ask a different question.
- **b** Categorical data. *Explanations vary*. Even though Antwon is asking about a specific number of pets, 2, the answers will be "Yes" or "No," which are categorical.

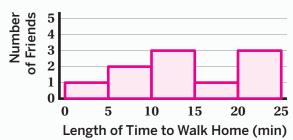
Lesson 2

- a The 2 dots tell us that there are 2 students in the class who read 4 books this month.
- **b** Yes. *Responses vary*. I agree with Julian because 12 out of the 20 students read 6 books or less, and that is more than half of the students.

Lesson 3

Lesson 4

- a Northeast
- Responses vary. These dot plots tell us that minimum wages in states in the Northeast are more different or further apart from each other. In the Midwest, minimum wages of states are more similar.

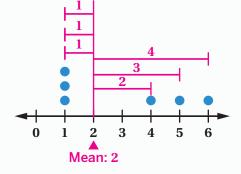

Lesson 5

a 32 states

Explanation: One strategy is to add the number of states in the 6–8 bin, which is 21, and the number of states in the 8–10 bin, which is 11.

- **b** Bin 10–12
- c No. *Explanations vary*. The 4 rectangles do not each represent a state; they represent bins that organize the data. The height of each rectangle tells you how many states are in each bin.

Lesson 6


Lesson 7

- a 5 tickets. Work varies. $\frac{7+3+4+6+8+2}{6} = 5$ (or equivalent)
- **b** Responses vary. In this situation, the mean tells us how many tickets each friend would get if they shared all of the tickets equally.

Lesson 8

No. *Explanations vary*. Ava is not correct because the sum of the deviations on the left of 2 is not equal to the sum of the deviations on the right of 2.

Left: 1 + 1 + 1 = 3Right: 2 + 3 + 4 = 9

Lesson 9

- a 7 baskets
- **b** 1.2 baskets

Explanation: Here is a strategy to calculate the MAD. Find each data point's distance from the mean and add the sum of all the distances. Then divide the sum by the number of data points. $\frac{2+1+0+0+3}{5} = 1.2$

Try This | Answer Key

Lesson 10

The MAD is approximately \$8.6 million.

Salaries (in millions)	Absolute Deviations
\$56	22.3
\$44	10.3
\$35	1.3
\$34	0.3
\$28	5.7
\$25	8.7
\$24	9.7
\$23.5	10.2

Lesson 11

17 inches

Lesson 12

- Median. *Explanations vary*. The median, 36.5, is a better measure of center to represent the ages of the teachers than the mean, 40, because most of the teachers are in their thirties.
- b The mean is higher than the median because all those older ages, like 64, mixed with the younger ages and made the mean greater. The median is just the middle number, so it doesn't matter that a few of the ages are really high.
- c The mean and median are likely to be far apart when most of the data is in one place and there are a few data points that are far away.

Lesson 13

Q1	5
Q2 (Median)	25
Q3	30

Lesson 14

9	
a	

	Car	Bike
Median	7 min	10 min
IQR	9 min	3 min
Range	13 min	6 min

b By bike. *Explanations vary*. Keya should choose the bike because the range of times by car is greater than the range of times by bike.

Lesson 15

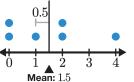
a Estimates vary.

	Median	IQR
Ladybugs	9	2
Beetles	9	6.5

b Responses vary. The medians of the two collections are the same, but the IQR of the ladybugs is much smaller. This tells us that a typical ladybug length is similar to a typical beetle length, but the ladybugs are more alike in their lengths than the beetles are in their lengths.

Lesson 16

Responses vary.

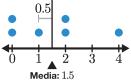

- No, because the medians of both data sets are the same: 5 math problems.
- Yes, because Jada has many lower values, so their mean, 6.6 problems, is lower than Mai's mean, 9 problems.

Grade 6 Unit 8 Glossary/6.º grado Unidad 8 Glosario

English

absolute deviation

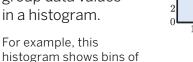
The distance between a value and the mean of a data set.



If a class's mean number of pets is 1.5, then the absolute deviation of a student who has 1 pet is 0.5.

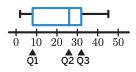
Español

desviación absoluta

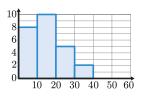

La distancia entre un valor y la media de un conjunto de datos.

Si la cantidad media de mascotas de una clase es 1.5, entonces la desviación absoluta de un estudiante que tiene 1 mascota es 0.5.

bin (of a histogram)

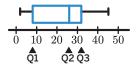

The intervals used to group data values in a histogram.

6 4 2 0 10 20 30 40 50 60


box plot A way to visualize numerical data sets. The data is divided into four

10 units each.

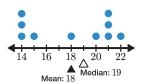
sections using five values: the minimum, Q1, Q2 (or the median), Q3, and the maximum. A box is drawn between Q1 and Q3. The line inside the box represents the median.


intervalo (de un histograma) Los intervalos que se usan para agrupar los valores de datos en un histograma.

Por ejemplo, este histograma muestra intervalos de 10 unidades cada uno.

diagrama de caja

Una forma de visualizar conjuntos de datos numéricos.

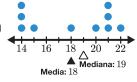

Los datos se dividen en cuatro secciones utilizando cinco valores: el mínimo, Q1, Q2 (o la mediana), Q3 y el máximo. Se dibuja una caja entre Q1 y Q3. La línea dentro de la caja representa la mediana.

categorical data Data that can be

sorted into categories instead of counted. Categorical data usually have values that are represented by words instead of numbers.

"What kind of pet do you have?" is a question that would result in categorical data.

center A single value that can be used to summarize the typical value in a data set.



Mean and median are measures of center.

datos categóricos Datos que pueden clasificarse en categorías en lugar de contarse. Los datos categóricos suelen tener valores que se representan mediante palabras en lugar de números.

"¿Qué tipo de mascota tienes?" es una pregunta que produciría datos categóricos.

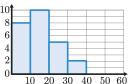
centro Un solo valor que puede utilizarse para resumir el valor típico de un conjunto de datos.

La media y la mediana son medidas de tendencia central, o sea, medidas de centro.

English

dot plot A way to visualize numerical data sets. where each data point is Number of Jelly Beans represented by a dot on a number line. Data points with the same value are stacked on top of each other. A dot plot is sometimes called a line plot.

For example, this dot plot shows that 3 students guessed that there were 18 jelly beans in a jar.


frequency table

A table that shows the number of times each value or category occurs in a data set.

Favorite Color	Frequency
Red	5
Blue	3
Pink	4

For example, this frequency table shows that 5 students selected red as their favorite color.

histogram A way to visualize numerical data where the data is grouped into bins represented by

rectangles. The height of each rectangle shows how many values are in that bin.

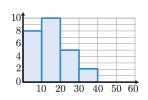
For example, this histogram shows that there are 8 data values from 0 up to (but not including) 10.

Español

diagrama de **puntos** Una forma de visualizar conjuntos de datos numéricos, en la que cada punto

de datos se representa mediante un punto en una recta numérica. Los puntos de datos con el mismo valor se apilan unos sobre otros. Un diagrama de puntos a veces se conoce como gráfica de puntos.

Por ejemplo, este diagrama de puntos muestra que 3 estudiantes estimaron que había 18 frijolitos de jalea en un tarro.


tabla de frecuencia

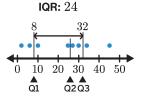
Una tabla que muestra el número de veces que aparece cada valor o categoría en un conjunto de datos.

Color favorito	Frecuencia
Rojo	5
Azul	3
Rosado	4

Por ejemplo, esta tabla de frecuencia muestra que 5 estudiantes seleccionaron el rojo como su color favorito.

histograma Una forma de visualizar datos numéricos en la que los datos se agrupan en intervalos

que se representan con rectángulos. La altura de cada rectángulo muestra cuántos valores hay en ese intervalo.

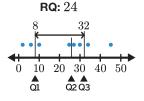

Por ejemplo, este histograma muestra que hay 8 valores de datos del 0 al 10 (sin incluirlo).

Grade 6 Unit 8 Glossary/6.º grado Unidad 8 Glosario

English

interquartile range (IQR) A measure

of spread. The IQR is calculated as the distance from Q1 to Q3, or the width of the box in a box plot.



For example, the IQR of this data set is 32 - 8 = 24.

Español

rango intercuartílico

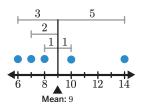
(RQ) Una medida de dispersión. El RQ se calcula como la distancia de Q1 a Q3, o el ancho de la caja en un diagrama de caja.

Por ejemplo, el RQ de este conjunto de datos es 32 - 8 = 24.

maximum The greatest value in a data set.

mean (average)

A measure of center. If you equally distribute a set of items into different groups, the mean is the number of



items in each group. It is also the balance point of a dot plot. To calculate the mean, you can add the values of all the data points, then divide by the number of data points.

The mean in this example is 3 tickets because that is the number each person would get if the tickets were distributed equally among four people.

mean absolute deviation (MAD) One way to measure how spread out a data set is from the mean. Sometimes we call

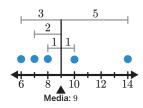
this the MAD. To find the MAD, add the distances between each data value and the mean. Then divide by the number of data values in the set.

For example, the MAD of this data set is 2.4 because 3+2+1+1+5=12 and $\frac{12}{5}=2.4$.

máximo El mayor valor en un conjunto de datos.

media (promedio)

Una medida de tendencia central. Si se distribuye equitativamente un conjunto de elementos en diferentes grupos, la



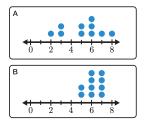
media es la cantidad de elementos en cada grupo. También es el punto de equilibrio de un diagrama de puntos. Para calcular la media, se pueden sumar los valores de todos los puntos de datos y luego dividir por la cantidad de puntos de datos.

La media en este ejemplo es 3 boletos porque es la cantidad que obtendría cada persona si los boletos se distribuyeran equitativamente entre cuatro personas.

desviación media absoluta (DMA)

Una forma de medir cuán disperso está un conjunto de datos con respecto de la media.

A veces se denomina DMA. Para calcular la DMA, se suman las distancias entre cada valor y la media. Luego se divide por la cantidad de puntos de datos (valores) del conjunto.


Por ejemplo, la DMA de este conjunto de datos es 2.4 porque 3+2+1+1+5=12 y $\frac{12}{5}=2.4$.

English


measure of center A single number that summarizes all of the values in a data set. It is usually a typical value for a data set. Mean and median are measures of center.

measure of spread

A single number that describes the spread of a data set. Range, interquartile range, and mean absolute deviation are measures of spread.

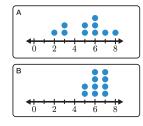
median A measure of center. It is the middle value of a data set when the values are

in numerical order. When there is an even number of data points, the median is the average of the two middle values.

The median of this data set is 19 because it is the average of the two middle values: 18 and 20.

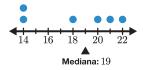
minimum The least value in a data set.

numerical data Data that includes values that are numbers and can be measured and meaningfully compared.


"How many pets do you have?" is a question that would result in numerical data.

Español

medida de tendencia central, medida de centro Un solo número que resume todos los valores de un conjunto de datos. Suele ser un valor típico de un conjunto de datos. La media y la mediana son medidas de tendencia central.


medida de dispersión

Un solo número que describe la dispersión de un conjunto de datos. El rango, el rango intercuartílico y la

desviación media absoluta son medidas de dispersión.

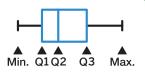
mediana Una medida de tendencia central. Es el valor del medio de un conjunto de

datos cuando los valores se clasifican en orden numérico. Cuando hay un número par de puntos de datos, la mediana es el promedio de los dos números centrales.

La mediana de este conjunto de datos es 19 porque es el promedio de los dos valores centrales: 18 y 20.

mínimo El menor valor en un conjunto de datos.

N

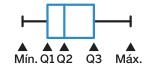

datos numéricos Datos que incluyen valores numéricos que pueden medirse y compararse de forma significativa.

"¿Cuántas mascotas tienes?" es una pregunta que produciría datos numéricos.

Grade 6 Unit 8 Glossary/6.º grado Unidad 8 Glosario

English

quartile Quartiles divide an ordered data set into four equal sections.

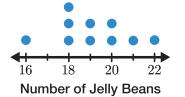

Quartile 1 (Q1) is the median of the lower half of the data.

Quartile 2 (Q2) is the median.

Ouartile 3 (O3) is the median of the upper half of the data.

Español

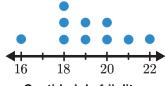
cuartil Los cuartiles dividen un coniunto de datos ordenado en cuatro secciones iguales.


El cuartil 1 (Q1) es la mediana de la mitad inferior de los datos.

El cuartil 2 (O2) es la mediana.

El cuartil 3 (Q3) es la mediana de la mitad superior de los datos.

range A measure of

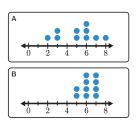

spread. It is the difference between the maximum and

minimum values in a data set.

For example, the range of this data set is 6 jelly

rango Una medida de dispersión. Es la diferencia entre los valores máximo y mínimo

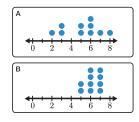
Cantidad de frijolitos


de un conjunto de datos.

beans because 22 - 16 = 6.

Por ejemplo, el rango de este conjunto de datos es 6 frijolitos de jalea porque 22 - 16 = 6.

shape A description of the distribution (or pattern) of the data within a data set. Descriptions of the shape of a distribution can include: symmetry, skew, clusters, and outliers.


spread A description of how alike or different the values in a distribution are. often in relation to the center. The spread also describes the variability of a distribution.

For example, Dot Plot A has a larger spread than Dot Plot B.

figura Una descripción de la distribución (o patrón) de los datos en un conjunto de datos. Las descripciones de la forma de una distribución pueden incluir: simetría, asimetría, agrupaciones y valores atípicos.

dispersión Una descripción de las semejanzas o diferencias de los valores en una distribución, a menudo en relación con el

centro. La dispersión también describe la variabilidad de una distribución.

Por ejemplo, el diagrama de puntos A tiene una dispersión mayor que el diagrama de puntos B.

English

statistic A single number that measures something about a data set.

Examples of statistics include: mean, median, MAD, and IQR.

statistical question A question that requires more than one piece of data to answer.

Here are some examples of statistical questions: What is the most popular band at your school? When do students in your class typically eat dinner?

Español

dato estadístico, estadística Un número único que mide algo de un conjunto de datos.

Ejemplos de datos estadísticos: media, mediana, DMA y RQ.

pregunta estadística Una pregunta que requiere más de un dato para responder.

Estos son algunos ejemplos de preguntas estadísticas: ¿Cuál es la banda más popular en tu escuela? ¿Cuándo suelen cenar los estudiantes de tu clase?