Publisher: Amplify Education

Program Title: Amplify Science

Standards Map for Kindergarten Through Grade Eight Grade 8 Discipline Specific –Next Generation Science Standards

MS-PS1 Matter and its Interactions

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performan ce Expectatio n	Publisher Citations
Models Modeling in 6–8 builds on K–5 and progresses to developing, using, and revising models to describe test, and predict more abstract phenomena and design systems. Develop a model to predict and/or describe phenomena. (MS-PS1 1)	Developing Models") Activity 5, Student View Lesson Brief, Digital Resources, "Modeling Molecules and Phases copymaster"	MS-PS1-1. Develop models to describe the atomic compositio n of simple molecules and extended structures. [Clarificatio n Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple	 [DCI, SEP, CCC] Chemical Reactions unit: Lesson 1.6, Activity 3, screen 2 of 3, Instructional Guide (step 8) and On-the-Fly Assessment (hummingbird icon) [DCI] Chemical Reactions unit: Lesson 4.4, Activity 1, screens 1–12 of 12, Student View [CCC] Phase Change unit: Lesson 1.5, Activity 3, Instructional Guide (steps 1–10), Student View, and On-the-Fly Assessment (hummingbird icon) [SEP] Phase Change unit: Lesson 1.6, Activity 4, Instructional Guide (steps 1–9), Student View, Possible Responses tab, Modeling Tool activity: Methane Lake Freezing, Modeling Tool activity: Methane Lake

		Knowledge About Collision Forces") Activity 5, Student View Harnessing Human Energy unit: Lesson 3.2, Activity 2, Instructional Guide and Student View Chemical Reactions unit: Lesson 2.3 Lesson Brief, Digital Resources, "Modeling Tool: How the Rust Formed copymaster" Activity 3, Instructional Guide (steps 1–7), Student View, and Possible Responses tab Lesson 3.4 Lesson Brief, Digital Resources, "Modeling Tool: Products of the Reaction copymaster" Activity 3, Instructional Guide (steps 1–5), Student View, and Possible Responses tab	molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular- level models could include drawings, 3D ball and stick	Evaporating, and On-the-Fly Assessment (hummingbird icon)
DCI	PS1.A: Structure and Properties of Matter Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1)	Chemical Reactions unit: ■ Lesson 1.5 ○ Activity 2, screen 3 of 3, Student View and simulation ○ Activity 3, screen 2 of 2, Instructional Guide (steps 9–10), Student View, and "Atomic Zoom-In: Comparing Substances at a Very Small Scale" article	structures, or computer representati ons showing different molecules with different types of atoms.]	

CC	 Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1) Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-PS1-1) 	Chemical Reactions unit: Lesson 1.5, Activity 2, screens 1—2 of 3, Instructional Guide (steps 3—5) and Teacher Support tab ("Background, Crosscutting Concept: Scale, Proportion, and Quantity") Light Waves unit: Lesson 2.3, Activity 4, Instructional Guide (step 8) and simulation Phase Change unit: Lesson 1.3 Activity 2, screens 1—2 of 2, Instructional Guide (steps 3—4, 9—13) Activity 3, Instructional	[Assessmen t Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or	
			molecule or extended structure is not required.]	

Science and Engineering Practices	Publisher Citations	Performance Expectation	Publisher Citations
Disciplinary Core Ideas Crosscutting Concepts	Fublisher Citations		

SEP Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

 Analyze and interpret data to determine similarities and differences in findings. (MS-PS1-2)

Force and Motion Engineering Internship unit:

- Ch.1, Day 6
 - Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool
 - Resources, "SupplyDrop Data copymaster"
- Ch.1, Day 5, Activity: Analyzing Results, Instructional Guide (steps 1–4) and Engineering Tip: Analyzing Data video

Magnetic Fields unit:

- Lesson 3.3
 - Activity 2, screen 1 of 2, Instructional Guide (steps 1–7) and Student View
 - Lesson Brief, Digital Resources, "USA Evidence Cards copymaster"

Light Waves unit:

 Lesson 2.5, Activity 3, screens 1-3 of 3, Instructional Guide and Student View

Chemical Reactions unit:

• Lesson 1.3, **Activity 3**, Instructional Guide (steps 6–11)

Phase Change Engineering Internship unit:

- Ch.1, Day 6
 - Activity: Testing Final Designs, Instructional Guide (steps 1–5)

MS-PS1-2. [SEP, CCC] Analyze and Chemical Reactions unit:

interpret data

properties of

before and after

the substances

determine if a

reaction has

[Clarification

Examples of

reactions could

include burning

wool, fat reacting

sugar or steel

with sodium

hydrogen

chloride.1

Boundary:

limited to

following

properties:

point, boiling

[Assessment

Assessment is

analysis of the

density, melting

hydroxide, and

mixing zinc with

Statement:

substances

interact to

chemical

occurred.

on the

 Lesson 1.3, Activity 4, Instructional Guide (steps 1–7), Student View, Possible Responses tab, Sorting Tool: Evaluating Evidence, and Onthe-Fly Assessment (hummingbird icon)

[DCI]

Chemical Reactions unit:

- Lesson 2.1, Activity 4, Instructional Guide (step 2) and On-the-Fly Assessment (hummingbird icon)
- Lesson 2.2, Activity 3, Instructional Guide (step 6) and On-the-Fly Assessment (hummingbird icon)
- Lesson 4.3
 - Activity 4, Student View and Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Final Written Arguments"

[SEP]

Force and Motion Engineering Internship unit:

- Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab
- Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster"

[CCC]

Chemical Reactions unit:

 Lesson 1.5, Activity 3, Instructional Guide (steps 6–7) and "Atomic Zoom-In: Comparing Substances at a Very Small Scale" article

		 Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" 	point, solubility, flammability, and odor.]	
SEP	Connections to Nature of Science Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS1-2)	 Phase Change unit: Lesson 2.3, Activity 3, Instructional Guide (step 1) and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") Light Waves unit: Lesson 3.6, Activity 3, Instructional Guide (step 2) and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") 	ouor.j	
DCI	PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2)	 Chemical Reactions unit: Lesson 1.3, Activity 3, screen 2 of 2, Instructional Guide and Student View Lesson 1.5, Activity 2, screen 3 of 3, Instructional Guide, Student View, and simulation (Chemical Stockroom mode) Lesson 1.4, Activity 3, screen 2 of 3, Instructional Guide (steps 9–11) and Teacher Support tab ("Background Science Note: About (Pure) Substances" 		
DCI	PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are	Chemical Reactions unit: • Lesson 2.1 • Activity 2, screens 3 of 3, Instructional Guide and Student View • Activity 3, screen 2 of 2, Instructional Guide, Student View, and simulation (Laboratory A mode)		

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 6–8 builds on K–5 and progresses to evaluating the merit and validity of ideas and methods. Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and	Harnessing Human Energy unit: ■ Lesson 3.3 □ Activity: Introducing Quality of Evidence, Instructional Guide (steps 1–8) □ Activity 2, Instructional Guide (steps 1–13) and Student View ■ Printable Resources, "Print Materials (8.5" x 11"), Ed-You-Swivel Evidence Cards, pages 24–28 Magnetic Fields unit: ■ Lesson 4.1 □ Activity 4, Instructional Guide (steps 1–12) and Student View	MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. [Clarification Statement: Emphasis is on natural resources that undergo a	[DCI] Chemical Reactions unit: Lesson 2.1, Activity 4, Instructional Guide (step 2) and On-the-Fly Assessment (hummingbird icon) [PE] Chemical Reactions unit: Lesson 2.1, Activity 5, Student View, Teacher Support tab ("Rationale, Pedagogical Goals: Reading about Synthetic Materials," "Assessment: Assessment Opportunity: Student Understanding of Synthetic Materials"), and "Synthetic Materials: Making Substances in the Lab" article

DCI	methods used, and describe how they are supported or not supported by evidence. (MS-PS1-3) PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify	 Lesson Brief, Digital Resources, "Science Seminar Evidence Cards A–D copymaster" Lesson 1.3, Activity 3, screen 2 of 2, Instructional Guide and Student View Lesson 1.5, Activity 2, screen 3 of 3, Instructional Guide and Student View, Possible Responses tab, and simulation (Chemical Stockroom mode) 	chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative	[DCI] Chemical Reactions unit: Lesson 2.2, Activity 3, Instructional Guide (step 6) and On-the-Fly Assessment (hummingbird icon) Lesson 4.3 Activity 4, Student View and Possible Responses tab Lesson Brief, Digital Resources, "Rubrics for Final Written Arguments" [SEP] Harnessing Human Energy unit:
DCI	it. (MS-PS1-3) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-3) ****Supplemental DCI ESS3.C, LS4.D (MS-PS1-5)	Chemical Reactions unit: Lesson 2.1 Activity 2, screen 3 of 3, Instructional Guide and Student View Activity 3, screen 2 of 2, Instructional Guide, Student View, Possible Responses tab, and simulation (Laboratory A mode) Lesson 2.2, Activity 3, Instructional Guide (steps 1–9)	information.]	 Lesson 3.3, Activity 2, Instructional Guide (steps 1–13), Student View, and On-the-Fly Assessment (hummingbird icon) Printable Resources, "Print Materials (8.5" x 11"), Ed-You- Swivel Evidence Cards, pages 24– 28 [CCC] Force and Motion Engineering Internship unit: Lesson 9, Activity: Finalizing the

CC C

Structure and Function

Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS1-3)

Force and Motion Engineering Internship unit:

 Ch.1, Day 3, Activity: Revising the Egg Drop Model Designs, Instructional Guide (steps 6–9)

Phase Change Engineering Internship

- Ch.1, Day 1, Activity: Reading About Phase Change Materials, Futura Chemical Engineer's Dossier, "Phase Change Materials" article
- Ch.1, Day 4, Activity: Analyzing Incubator Material, Instructional Guide (steps 1–11), BabyWarmer design tool, and Teacher Support tab ("Background, Crosscutting Concepts: Structure and Function")

CC

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

■ Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-PS1-3)

Force and Motion Engineering Internship unit:

• Ch.1, Day 1, **Activity: Introducing Futura**, Instructional Guide (steps 2–3)

Phase Change Engineering Internship unit:

 Ch.1, Day 5, Lesson Brief, Digital Resources, "Meet an Engineer Who Works with Genetic" Equipment" article

Chemical Reactions unit:

 Lesson 2.3, Activity 5, screen 2 of 2, Student View, Teacher Support tab ("Rationale, Pedagogical Goals: Meeting a Scientist Article" and "Rationale, Pedagogical Goals: Understanding the Nature of Science"), and "Meet a Scientist Who Preserves Artwork" article Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster"

[SEP]

Magnetic Fields unit:

- Lesson 4.1
 - Activity 4, Instructional Guide (steps 1–12) and Student View
 - Lesson Brief, Digital Resources, "Science Seminar Evidence Cards A–D copymaster"

Lesson 1.2, Activity: Investigating Methane on Titan, Instructional Guide (steps 1–6) and Studying a Distant Moon video
Light Waves unit: ■ Lesson 1.2, Activity: Interview with a Spectroscopist, Interview with a Spectroscopist video
Influence of Science, Engineering and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural Resources, "and economic conditions. Thus technology use varies from region to Harnessing Human Energy unit: • Lesson 1.4, Activity 3, "Energy Inventions" article Force and Motion Engineering Internship unit: • Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–3) and Welcome to Futura video Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–5) and Welcome to Futura video

Science and Engineering Practices Disciplinary Core Ideas	Publisher Citations	Performance Expectation	Publisher Citations	
Crosscutting Concepts				

SEP

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

 Develop a model to predict and/or describe phenomena. (MS-PS1-1), (MS-PS1-4)

Phase Change unit:

- Lesson 1.3,
 - Activity 2, screen 2 of 2, Instructional Guide (steps 11–13)
 - o **Activity 5**, Student View
- Lesson 2.3, Activity 1,
 Instructional Guide (steps 1–6),
 Student View, Possible
 Responses tab, and Modeling
 Tool activity: Cause of Lake
 Freezing

Force and Motion unit:

- Lesson 1.2, Activity 5, Student View and Teacher Support tab ("Background, Pedagogical Goals: Developing Models")
- Lesson 3.2
 - Activity 1, Student View, Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Discussing Prior Knowledge About Collision Forces")
 - o **Activity 5**, Student View

Harnessing Human Energy unit:

 Lesson 3.2, Activity 2, Instructional Guide and Student View

Chemical Reactions unit:

- Lesson 2.3
 - Activity 3, Instructional Guide (steps 1–7) and Student View
 - Lesson Brief, Digital Resources, "Modeling

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of

state occurs.

Examples of

Page 10 of 76

[CCC]

Force and Motion unit:

Lesson 1.6, Activity 3,
 Instructional Guide (steps 1–9),
 Student View, Possible
 Responses tab, On-the-Fly
 Assessment (hummingbird icon),
 and Teacher Support tab
 ("Background, Crosscutting
 Concepts: Cause and Effect")

[DCI, SEP]

Phase Change unit:

Lesson 1.6, Activity 4,
 Instructional Guide (steps 1–9),
 Student View, Possible
 Responses tab, Modeling Tool
 activity: Methane Lake Freezing,
 Modeling Tool activity: Methane
 Lake Evaporating, and On-the-Fly
 Assessment (hummingbird icon)

Thermal Energy unit:

- Lesson, 1.4
 - Activity 3, Instructional Guide (steps 1–10), Possible Responses tab, and On-the-Fly Assessment (hummingbird icon)
 - Lesson Brief, Digital Resources, "Modeling Tool: Differences in Temperature copymaster"

[DCI]

Thermal Energy unit:

 Lesson 2.3, Activity 5, Teacher Support tab ("Rationale, Pedagogical Goals: Discussing Publisher: **Amplify Education Amplify Science** Program Title:

models could Formed copymaster" Meanings of Heat") include Lesson 3.4 drawings and Activity 3, Instructional Phase Change unit: diagrams. Guide (steps 1–5) and Examples of Student View Lesson Brief, Digital particles could Lesson 4.4 Resources, "Modeling include Tool: Products of the molecules or Reaction copymaster" inert atoms. Examples of Force and Motion unit: pure substances • Lesson 2.3, Activity 3, Student could include View, Modeling Tool activity: Claim 1, Ch. 2 and Modeling Tool Thermal Energy unit: water, carbon Activity: Claim 2. Ch. 2 Lesson 3.3 dioxide, and Phase Change unit: DCI helium.] PS1.A: Structure and Lesson 1.3, **Properties of Matter** o **Activity 4,** screens 1–2 Gases and liquids are of 2. Instructional Guide made of molecules or (steps 3–13), Student View. Possible inert atoms that are Responses tab. and moving about relative simulation to each other. (MSsimulation Activity 2, screen 1 of 2, PS1-4) Teacher Support tab In a liquid, the ("Background, Science Note: About Molecules molecules are and Atoms") constantly in contact **Activity 3**, Instructional with others; in a gas, Guide (step 7) and they are widely simulation spaced except when Lesson 1.5 Activity 2, screen 2 of 2, they happen to collide. Instructional Guide (steps In a solid, atoms are 4–7), Student View, and closely spaced and "Weird Water Events" may vibrate in position article Transfer" but do not change Activity 4, Instructional Guide (steps 1-6), relative locations. Student View, and (MS-PS1-4) Modeling Tool activity: Ice Pop

Tool: How the Rust

the Everyday and Scientific

- Lesson 2.1, **Activity 2**, screen 2 of 2. Instructional Guide (step 13)
 - o Activity 4, Student View, and Possible Responses
 - Lesson Brief. Digital Resources, "Rubrics for Final Written Argument"
 - **Activity: Setting Up the** Thermal Energy and Size Demo, Instructional Guide (steps 1–10)
 - Activity 2, Instructional Guide (steps 1–11), Student View. Possible Responses tab, and
 - Activity 4, screen 2 of 2, Student View. Possible Responses tab, and "Dumpling Dilemma: Oil or Water?" article
 - **Lesson Brief**, Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy

	■ The changes of state	• Lesson 3.3,
	that occur with	o Activity 4 , screen 2 of 2,
	variations in	Student View and "Pressure and
	temperature or	Temperature:
	pressure can be	Evaporating Water on
	described and	Mars" article
	predicted using these	
	models of matter.	
	(MS-PS1-4)	
DCI	PS3.A: Definitions of	[Term "heat"]
	Energy	Thermal Energy unit:
	The term "heat" as	 Lesson 2.3, Activity 5, Teacher Support tab ("Rationale,
	used in everyday	Pedagogical Goals: Discussing
}	language refers both	the Everyday and Scientific
}	to thermal energy (the	Meanings of Heat ")
	motion of atoms or	Dhana Chaman with
}	molecules within a	Phase Change unit:Lesson 2.1, Activity 2, screen 2
	substance) and the	of 2, Instructional Guide (step 13)
	transfer of that	,
	thermal energy from	[Temperature and kinetic energy]
	one object to another.	Phase Change unit:
	In science, heat is	• Lesson 2.2
	used only for this	o Activity 3 , Instructional Guide (steps 1–5),
}	second meaning; it	Student View, and
	refers to the energy	simulation.
	transferred due to the	Activity: Playing
	temperature	Zooming in on Phase
	difference between	Change unit: Zooming in
	two objects.	on Phase Change video • Activity 4, screen 1–2 of
	(secondary to MS-	2, Instructional Guide
	PS1-4)	(steps 1–8) and Student
	The temperature of a	View
	system is proportional	
	to the average internal	[Role of potential energy in temperature]
	kinetic energy and	Phase Change Engineering Internship unit:
	potential energy per	dint.

Publisher: **Amplify Education Amplify Science** Program Title:

> atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4)

Ch.1, Day 2, Activity 2, Instructional Guide (steps 5–12) and Futura Chemical Engineer's Dossier, "Temperature Plateau" article

[Temperature is not...]

Thermal Energy unit:

• Lesson 3.2, Activity 2, Instructional Guide (steps 1–8), Student View, and "Thermal Energy is NOT Temperature" article

[Type and number of atoms or molecules] Thermal Energy unit:

- Lesson 3.3
 - o Activity: Setting Up the Thermal Energy and Size Demo, Instructional Guide (steps 1–10)
 - o Activity 2, Instructional Guide (steps 1-11), Student View, Possible Responses tab, and simulation
 - Activity 4, screen 2 of 2, Student View. Possible Responses tab, and "Dumpling Dilemma: Oil or Water?" article
 - Lesson Brief, Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer"

Cause and Effect

Thermal Energy unit:

	<u>, </u>	
 Cause and effect relationships may be used to predict phenomena in natural 	Lesson 3.3, Activity: Setting Up the Thermal Energy and Size Demo, Instructional Guide (step 10)	
or designed systems.	Force and Motion unit:	
(MS-PS1-4)	 Lesson 1.3, Activity 5, Student View and Sorting Tool activity: Cause and Effect Lesson 1.6, Activity 3, Teacher Support tab ("Background, Crosscutting Concepts: Cause and Effect") 	
	Phase Change Engineering Internship unit:	
	• Ch.1, Day 5	
	On Activity: Testing Incubator Designs, Instructional Guide (steps 1–3) and BabyWarmer Design Tool Lesson Brief, Digital Resources, "BabyWarmer Data sheet copymaster"	

	cience and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and	Phase Change unit: ■ Lesson 1.3 □ Activity 2, screen 2 of 2, Instructional Guide (steps 10–13) and Teacher Support tab ("Background, Pedagogical Goals: Developing Models")	MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a	[DCI, SEP, CCC] Chemical Reactions unit: • Lesson 3.4 • Activity 3, Instructional Guide (steps 1–5) and Student View • Lesson Brief, Digital Resources, "Modeling Tool: Products of the Reaction copymaster"

- predict more abstract phenomena and design systems.
- Develop a model to describe unobservable mechanisms.

- Lesson Brief, Digital Resources, "Modeling Molecules and Phases copymaster"
- o Activity 5, Student View

Force and Motion unit:

 Lesson 1.2, Activity 5, Student View and Teacher Support tab ("Background, Pedagogical Goals: Developing Models")

Magnetic Fields unit:

- Lesson 1.3
 - Activity 4, Instructional Guide (steps 1–13), Student View, and Teacher Support tab ("Background, Pedagogical Goals: Magnetic Fields Modeling Tool" and "Instructional Suggestion, Modeling Tool: Extra Support")
 - Lesson Brief, Digital Resources, "Modeling Tool: Attracting and Repelling Magnets copymaster"
- Lesson 1.6
 - Activity 4, Instructional
 Guide (steps 1–4) and
 Student View
 - Lesson Brief, Digital Resources, "Modeling Tool: Attracting and Repelling Magnets copymaster"

Chemical Reactions unit:

Lesson 3.4

chemical reaction and thus mass is conserved. [Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms.] [Assessment Boundary: Assessment does not include the use of atomic masses. balancing symbolic equations, or intermolecular

[DCI, CCC]

Chemical Reactions unit:

- Lesson 4.3
 - Activity 4, Student View and Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Final Written Arguments"
- Lesson 4.4
 - Activity 2, Student View and Possible Responses tab
 - Activity 3, Student View and Possible Responses tab
 - Lesson Brief, Digital Resources, "End-of-Unit Assessment Answer Key and Scoring Guide"

[SEP]

Phase Change unit:

Lesson 1.6, Activity 4,
 Instructional Guide (steps 1–9),
 Student View, Possible Responses tab, Modeling Tool activity:
 Methane Lake Freezing, Modeling Tool activity: Methane Lake Evaporating, and On-the-Fly Assessment (hummingbird icon)

forces.

SEP	Connections to Nature of Science	 Activity 3, Instructional Guide (steps 1–5) and Student View Lesson Brief, Digital Resources, "Modeling Tool: Products of the Reaction copymaster" Phase Change unit: Lesson 1.2, Activity 4, Student View, Teacher Support tab
	Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS- PS1-5)	("Rationale, Pedagogical Goals: Understanding the Nature of Science"), and "Air Pressure and Boyle's Law" article
DCI	PS1.B: Chemical Reactions The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-5)	Chemical Reactions unit: ■ Lesson 3.2 □ Activity 1, Student View □ Activity 2, Instructional Guide (steps 1–6), Student View, and simulation □ Activity 3, screen 1 of 2, Student View and "What Happens When Fuels Burn?" article ■ Lesson 3.3, Activity 2, Instructional Guide (steps 1–7) and Student View
CC C	Energy and Matter ■ Matter is conserved because atoms are conserved in physical and chemical	Chemical Reactions unit: ■ Lesson 3.2 □ Activity 1, Student View □ Activity 2, Instructional Guide (steps 1–6), Student View, and simulation □ Activity 3, screen 1 of 2,

processes. (MS-PS1- 5)	Student View and "What Happens When Fuels Burn?" article Activity 4, Instructional Guide (step 7)		
Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories. Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. (MS- PS1-6)	Phase Change Engineering Internship unit: ■ Unit Guide, Unit Overview ■ Ch.1, Day 5 □ Activity: Introducing The Design Cycle, Instructional Guide (steps 1–5) and The Design Cycle video □ Activity: Testing Incubator Designs, Instructional Guide (steps 1–3) and BabyWarmer Design Tool ■ Ch.1, Day 6 □ Activity: Testing Final Designs, Instructional Guide (steps 1–5) and BabyWarmer Design Tool □ Lesson Brief, Digital Resources, "BabyWarmer Data copymaster Force and Motion Engineering Internship unit: ■ Unit Guide, Unit Overview ■ Ch.1, Day 3, Activity: Introducing The Design Cycle, Instructional Guide (steps 1–3) and The Design Cycle video ■ Ch.1, Day 4 □ Activity: Investigating	MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance.	 [SEP, DCI] Phase Change Engineering Internship unit: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster" Force and Motion Engineering Internship unit: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster" [DCI] Chemical Reactions unit: Lesson 2.5 Activity 4, Student View, Teacher Support tab ("Rationale, Pedagogical Goals: Reading About Endothermic and Exothermic Reactions," "Assessment, Assessment, Assessment Opportunity: Student Understanding of Energy in Chemical Reactions unit") and "Endothermic and Exothermic Reactions" article

		SupplyDrop, Instructional Guide (steps 1–8) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Ch.1, Day 6 Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster"	Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is	[CCC] Light Waves unit: Lesson 3.3, Activity 3, Instructional Guide (steps 1–5), Student View, Possible Responses tab, and On-the-Fly Assessment (hummingbird icon) Harnessing Human Energy unit: Lesson 2.2, Activity 4, Instructional Guide (steps 1–8) and Sorting Tool activity: Introducing Energy Transfer
DCI	PS1.B: Chemical Reactions Some chemical reactions release energy, others store energy. (MS-PS1-6)	Chemical Reactions unit: ■ Lesson 2.5, Activity 4, Student View and "Endothermic and Exothermic Reactions" article	limited to the criteria of amount, time, and temperature of substance in testing the device.]	
DCI	Possible Solutions ■ A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary to MS-PS1-6)	Phase Change Engineering Internship unit: • Unit Guide, Unit Overview • Ch.1, Day 5 • Activity: Testing Incubator Designs, Instructional Guide (steps 1–3) and BabyWarmer Design Tool • Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" • Activity: Analyzing Designs, Instructional Guide (steps 1–6) • Ch.1, Day 6 • Activity: Testing Final Designs, Instructional Guide (steps 1–5)		

		o Lesson Brief , Digital
		Resources, "BabyWarmer
		Data copymaster
		Force and Motion Engineering
		<i>Internship</i> unit:
		Unit Guide, Unit Overview
		• Ch.1, Day 4
		 Activity: Investigating SupplyDrop,
		Instructional Guide (steps
		1–8) and SupplyDrop
		Design Tool
		 Lesson Brief, Digital
		Resources, "SupplyDrop
		Data copymaster"
		• Ch.1, Day 6
		Activity: Testing Final
		Designs , Instructional Guide (steps 1–5,) and
		SupplyDrop Design Tool
		Lesson Brief, Digital
		Resources, "SupplyDrop
		Data copymaster"
DCI	ETS1.C: Optimizing the	Phase Change Engineering Internship
	Design Solution	unit:
	Although one design	Unit Guide, Unit Overview
	may not perform the	• Ch.1, Day 1, Lesson Brief,
	best across all tests,	Digital Resources, "Video:
	•	Engineering Tips: Optimal
	identifying the	Designs" ● Ch.1, Day 5
	characteristics of the	○ Activity: Testing
	design that	Incubator Designs,
	performed the best in	Instructional Guide (steps
	each test can provide	1–3) and BabyWarmer
	useful information for	Design Tool
	the redesign	 Lesson Brief, Digital
	process—that is,	Resources, "BabyWarmer
	some of the	Data copymaster"
	characteristics may	Activity: Analyzing Decimal Instructional
	•	Designs, Instructional
	be incorporated into	Guide (steps 1–6)

	the new design. (secondary to MS-PS1-6) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary to MS-PS1-6)	 Ch.1, Day 6 Activity: Testing Final Designs, Instructional Guide (steps 1–5) Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" Force and Motion Engineering Internship unit: Unit Guide, Unit Overview Ch.1, Day 4 Activity: Investigating SupplyDrop, Instructional Guide (steps 1–8) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Ch.1, Day 5 Activity: Analyzing Results, Instructional Guide (step 1–4) and Engineering Tip:	
CCC	Energy and Matter The transfer of energy can be	Resources, "SupplyDrop Data copymaster" Harnessing Human Energy unit: Lesson 2.2, Activity 4, Instructional Guide (steps 1–8) and Sorting Tool activity:	
	tracked as energy flows through a	Introducing Energy Transfer	

designed or natural system. (MS-PS1-6)	Light Waves unit: • Lesson 1.2, Activity 3, Instructional Guide (steps 1–15) and Student View		
	Thermal Energy unit: ■ Lesson 2.3, Activity 4, Instructional Guide (steps 4–12)		

MS-PS2 Motion and Stability: Forces and Interactions

Science and Engineering			Performance	Publisher Citations	
Practices Disciplinary Core Ideas		Publisher Citations	Expectation		
	Crosscutting Concepts				
SEP	Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Apply scientific ideas or principles to design an object, tool, process or system. (MS-PS2-1)	Force and Motion Engineering Internship unit: Unit Guide, Unit Overview Ch.1, Day 6, Designs, Instruction Guide (steps 1–5) SupplyDrop Design Lesson Brief, Dignesources, "SupplyDrop Data copymaster" Ch.1, Day 8, Activity: Revuesign Decisions, Instruction Guide (steps 1–6) and Post Responses tab Phase Change Engineering Interventit: Unit Guide, Unit Overview Ch.1, Day 6, Activity: Testing Indexional Country Country Designs, Instruction Guide (steps 1–5)	Law to design a solution to a problem involving the motion of two colliding objects.* [Clarification Statement: Examples of practical problems could include the impact of collisions	[DCI] Force and Motion unit: Lesson 4.3 Activity 4, Student View and Possible Responses tab Lesson Brief, Digital Resources, "Rubrics for Final Written Argument" Lesson 4.4 Activity 2, Student View and Possible Responses tab Activity 3, Student View and Possible Responses tab Lesson Brief, Digital Resources, "End-of-Unit Assessment Answer Key and Scoring Guide"	

DCI	PS2.A: Forces and Motion For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton's Third Law). (MS-PS2-1)	 Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" Ch.1, Day 8, Activity: Revising Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab Lesson 3.2 Activity 2, screens 1–2 of 2, Instructional Guide (steps 1–10) and Student View Activity 3, screens 1–3 of 3, Instructional Guide (steps 1–10) and Student View Activity 2, "Crash! Forces in Collisions" article Force and Motion Engineering	cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]	Internship unit: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster" Phase Change Engineering Internship unit: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster" [CCC] Magnetic Fields unit: Lesson 2.4, Activity 4, Instructional Guide (steps 1–8), Student View, Possible Responses tab, Modeling Tool: Spacecraft Launch Energy copymaster, and On-the-Fly Assessment (hummingbird icon) Lesson 4.3 Activity 4, Student View and Possible Responses tab Lesson Brief, Digital
CC	Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and	Magnetic Fields unit: Lesson 1.3, Activity 4, screen 1 of 2, Instructional Guide (steps 1–5) and Teacher Support tab ("Background, Crosscutting Concepts: Systems and System Models") Harnessing Human Energy unit:		Resources, "Rubrics for Final Written Argument"

	cience and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Planning and Carrying Out Investigations	Magnetic Fields unit:	MS-PS2-2.	[DCI]

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

■ Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-PS2-2)

 Lesson 3.1, Activity 2, Instructional Guide (steps 1–13) and Student View

Force and Motion unit:

- Lesson 2.1
 - Activity 2, Instructional Guide (steps 1–16), Student View, and Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Investigations of Forces on Different Objects"

Thermal Energy unit:

- Lesson 3.3
 - o Lesson Brief
 - Materials and Preparation, Preparation Before the Day of the Lesson, step 10,
 - Digital
 Resources,
 "Planning and
 Conducting
 Investigations of
 Thermal Energy
 Transfer
 copymaster" and
 "Rubrics for
 Assessing
 Students'
 Investigations of
 Thermal Energy
 Transfer"
 - Activity 4, "Dumpling Dilemma: Oil or Water?" article

Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the obiect. [Clarification Statement: Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units.] [Assessment Boundary:

Force and Motion unit:

- Lesson 1.6
 - Activity 3, Instructional Guide (steps 3–11), Student View, Possible Responses tab, and Onthe-Fly Assessment (hummingbird icon)
 - o Activity 4, Student View
- Lesson 2.3, Activity 3, Instructional Guide (steps 1–13), Student View, Possible Responses tab, Modeling Tool activity: Claim 1, Modeling Tool activity: Claim 2, Ch. 2 and On-the-Fly Assessment (hummingbird icon)

[DCI, SEP]

Force and Motion unit:

- Lesson 2.1
 - Activity 2, Instructional Guide (steps 1–16 and Student View, Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Investigations of Forces on Different Objects

[CCC]

Thermal Energy unit:

 Lesson 2.4, Activity 4, Instructional Guide (steps 1–4), Student View, and On-the-Fly Assessment (hummingbird icon)

Phase Change unit:

- Lesson 3.2
 - Activity 3, Instructional Guide (steps 2–8), Student

Assessment is

SEP

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

 Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS2-2)

Force and Motion unit:

- Lesson 3.4, Activity 2, Instructional Guide (steps 1–6), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science")
- Lesson 4.3, Activity 6, Student View

Light Waves unit:

 Lesson 3.6, Activity 3, Instructional Guide (steps 1–6), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science")

Thermal Energy unit:

- Lesson 3.4
 - Activity 2, Instructional Guide (steps 1–5), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science")
 - Lesson Brief, Digital Resources, "Modeling Tool: Differences in Temperature Change copymaster"

Phase Change unit:

 Lesson 2.3, Activity 3, Instructional Guide (steps 1–3), Student View, Possible limited to forces and changes in motion in one dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.]

- View, and "Liquid Oxygen" article
- Activity 4, Instructional Guide (steps 1–9), Student View, and simulation

[SEP]

Thermal Energy unit:

- Lesson 3.3
 - Lesson Brief
 - Materials and Preparation, Preparation Before the Day of the Lesson, step 10
 - Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer")
 - Activity 4, "Dumpling Dilemma: Oil or Water?" article

Magnetic Fields unit:

 Lesson 3.1, Activity 2, Instructional Guide (steps 1–13) and Student View

	also be shared. (MS-	
	PS2-2)	
CCC	■ Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales. (MS-PS2-2)	Phase Change unit: ■ Lesson 3.2 □ Activity 3, Instructional Guide (steps 2–8), Student View, and "Liquid Oxygen" article □ Activity 4, Instructional Guide (steps 1–9), Student View, and simulation Thermal Energy unit: ■ Lesson 2.4, Activity 4, Instructional Guide (steps 1–4), Student View, and Teacher Support tab ("Background, Crosscutting Concept: Stability and Change")
		Force and Motion unit:
		 Lesson 3.3, Activity 2, Instructional Guide, Student View, and "Crash!" article (paragraphs 3 and 4)

	cience and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Asking Questions and Defining Problems Asking questions and defining problems in grades 6–8 builds from grades K–5 experiences	Magnetic Fields unit: ■ Lesson 3.5 ○ Activity 6, Student View ○ Lesson Brief, Digital Resources, "Family Homework Experience: Asking Questions about	MS-PS2-3. Ask questions about data to determine the factors that affect the	[SEP] Magnetic Fields unit: • Lesson 3.5 • Activity 6, Student View • Lesson Brief, Digital Resources, "Family Homework Experience:

Publisher: **Amplify Education Amplify Science** Program Title:

> and progresses to specifying relationships between variables, and clarifying arguments and models.

Ask questions that can be investigated within the scope of the classroom. outdoor environment. and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles. (MS-PS2-3)

Magnetic Forces copymaster")

strength of electric and magnetic forces. [Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets. electric motors. or generators. Examples of data could include the effect of the number of turns of wire on the strength of electromagnet. or the effect of increasing the number or strength of magnets on the speed of an electric motor.1 [Assessment Boundary: Assessment about questions that require

Asking Questions about Magnetic Forces copymaster"

Force and Motion unit:

- Lesson 2.1
 - Activity 2, Instructional Guide (steps 1–16), Student View and Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Investigations of Forces on Different Objects"
- Lesson 2.2, Activity 2, On-the-Fly Assessment (hummingbird icon)

- Lesson 1.2
 - Guide (steps 4–7) and Student View
 - Instructional Guide (steps 4–5), Student View, and simulation
 - Resources, "Exploring copymaster"
 - Activity 5, screens 1–2 of 2, Instructional Guide (steps 1–7)

[Magnetic forces, strength and distance] Magnetic Fields unit:

Thermal Energy unit:

• Lesson 3.3, Lesson Brief, Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer"

[DCI]

Magnetic Fields unit:

- Lesson 4.3
 - **Activity 4, Student View** and Possible Responses tab
 - **Lesson Brief**, Digital Resources, "Rubrics for Final Written Argument"
- Lesson 4.4
 - Activity 2, Student View and Possible Responses tab

PS2.B: Types of DCI Interactions

Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects. (MS-PS2-3)

[Magnetic forces attractive or repulsive] Magnetic Fields unit:

- - Activity 3, Instructional
 - Activity 4, screen 2 of 2,
 - o Lesson Brief, Digital and Simulating Magnets

quantitative

answers is

		[Electromagnetic forces] Magnetic Fields unit: Lesson 3.5 Activity: How an Electromagnet Works, Instructional Guide (steps 1–2) and "How an Electromagnet Works" video Activity 2, Instructional Guide (steps 1–4) Activity 3, Student View and simulation Lesson 1.5, Activity 5, Student View and "Painting with Static Electricity" article [Electric forces] Magnetic Fields unit: Lesson 3.2, Activity 4, "Escaping a Black Hole" article (paragraph 3) Lesson 4.1 Activity 3, Instructional Guide (steps 1–8) and Student View Lesson Brief, Digital Resources, "Roller Coaster Design Claims copymaster"	reasoning and algebraic thinking.]	CCC Force and Motion unit: Lesson 1.6, Activity 3, Instructional Guide (steps 1–10), Student View, and On-the-Fly Assessment (hummingbird icon) Lesson 3.2, Activity 4, Instructional Guide (steps 1–4), Student View, and On-the-Fly Assessment (hummingbird icon)
С	■ Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS2-3)	 Lesson 3.3, Activity: Setting Up the Thermal Energy and Size Demo, Instructional Guide (step 10) Force and Motion unit: 	ne 29 of 76	

 Lesson 1.3, Activity 5, Student View and Sorting Tool activity: Cause and Effect Lesson 1.6. Activity 3, Teacher Support tab ("Background, Crosscutting Concepts: Cause and Effect") 	
Phase Change Engineering Internship Init: Ch.1, Day 5 "Testing Incubator Designs" Activity, Instructional Guide (steps 1–3) and BabyWarmer Design Tool Lesson Brief, Digital Resources, "BabyWarmer Data sheet copymaster"	

	Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SE	Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds from K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.	 Force and Motion unit: Chapter 4, Chapter Overview Lesson 4.2, Activity 3, Instructional Guide (steps 1–11) and Student View Lesson 4.3, Activity 4, Instructional Guide (steps 1–5 and Student View Magnetic Fields unit: Chapter 4, Chapter Overview Lesson 4.3 Activity 3, Instructional Guide 	MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of	 [CCC] Magnetic Fields unit: Lesson 1.3, Activity 4, screen 1 of 2, Instructional Guide (steps 1–5) and Teacher Support tab ("Background, Crosscutting Concepts: Systems and System Models") [DCI] Magnetic Fields unit: Lesson 3.2, Activity 4, screen 2 of 2, Student View, "Escaping a Black Hole" article, and Teacher

Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-PS2-4)

(steps 1–13) and Student View

 Activity 4, Student View and Possible Responses tab

Light Waves unit:

- Chapter 4, Chapter Overview
- Lesson 4.2, Activity 3, Instructional Guide (steps 1– 12) and Student View
- Lesson 4.3, Activity 4, Instructional Guide (steps 1– 3), Student View, and Possible Responses tab

Force and Motion Engineering Internship unit:

- Ch.1, Day 7, "Introducing the Proposal" Activity, Instructional Guide (steps 1–4)
- Ch.1, Day 9, "Finalizing the Proposal" Activity, Instructional Guide (steps 1–2) and Possible Responses tab

SEP Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

 Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS2-4)

Force and Motion unit:

- Lesson 3.4, Activity 2, Instructional Guide (steps 1– 6), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science")
- Lesson 4.3, **Activity 6**, Student View

Light Waves unit:

Lesson 3.6, Activity 3,
 Instructional Guide (steps 1–6), Student View, Possible Responses tab, and Teacher

interacting objects.

[Clarification] Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction. distance from the Sun. and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton's Law of Gravitation or Kepler's Laws.]

Support tab ("Assessment, Assessment Opportunity: Student Understanding of Mass and Gravity")

[SEP, CCC]

Magnetic Fields unit:

- Lesson 4.3
 - Activity 4, Student View and Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Final Written Argument"

[SEP]

Force and Motion unit:

- Lesson 4.3
 - Activity 4, Student View and Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Final Written Argument"

Page 31 of 76

Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science")

Thermal Energy unit:

- Lesson 3.4
 - Activity 2,

 Instructional Guide
 (steps 1–5), Student
 View, Possible
 Responses tab, and
 Teacher Support tab
 ("Rationale,
 Pedagogical Goals:
 Understanding the
 Nature of Science")

 Lesson Brief, Digital

 Resources, "Modeling
 Tool: Differences in
 Temperature Change
 copymaster"

Force and Motion unit:

- Lesson 4.3
 - Activity 2, Instructional Guide (steps 1–11), Student View, and Possible Responses tab
 - Lesson Brief, Digital Resources, "Reasoning Tool copymaster"

Phase Change unit:

 Lesson 2.3, Activity 3, Instructional Guide (steps 1– 3), Student View, Possible Responses tab, and Teacher Support tab ("Instructional")

		Suggestion, Going Further:
DO	DS2 D. Types of	Correlation and Causation")
DCI	PS2.B: Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun. (MS-PS2-4) ****Supplemental	 Magnetic Fields unit: Lesson 3.2, Activity 4, screen 2 of 2, Student View and "Escaping a Black Hole" article
	ESS1.A, ESS1.B	
CC	Systems and System	Magnetic Fields unit:
С	Models can be used to represent systems and their interactions—such as inputs, processes	Lesson 1.3, Activity 4, screen 1 of 2, Instructional Guide (steps 1–5) and Teacher Support tab ("Background, Crosscutting Concepts: Systems and System Models")
	and outputs—and energy and matter flows within systems. (MS-PS2-4)	 Harnessing Human Energy unit: Lesson 2.1, Activity 3, screen 2 of 3, Instructional Guide (step 4) and Student View

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations	-
---	---------------------	----------------------------	---------------------	---

SEP

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

Conduct an investigation and evaluate the experimental design to produce data to serve as the basis for evidence that can meet the goals of the investigation. (MS-PS2-5)

Magnetic Fields unit:

- Lesson 1.3
 - Activity 3, Instructional Guide (steps 1–9)
 - Lesson Brief, Digital Resources, "Magnet Tests Evidence Cards copymaster"
- Lesson 3.1, Activity 2, Instructional Guide (steps 1– 13), Student View, and Possible Responses tab
- Lesson 4.1
 - Activity 4, Instructional Guide (steps 1–12) and Student View
 - Lesson Brief, Digital Resources, "Science Seminar Evidence Cards A–D copymaster"

Force and Motion unit:

- Lesson 2.1
 - Activity 2, Instructional Guide (steps 1–16), Student View, and Possible Responses tab
 - Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Investigations of Forces on Different Objects"
- Lesson 4.3
 - Activity 5, Instructional Guide (steps 1–9), Student

MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. [Clarification Statement: Examples of this phenomenon could include the interactions of magnets, electrically charged strips of tape, and electrically charged pith balls. Examples of investigations could include first-hand experiences or

[DCI]

Magnetic Fields unit:

- Lesson 1.5, Activity 5, Student View, "Painting with Static Electricity" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Electric Fields")
- Lesson 3.2
 - Activity 3, Instructional Guide (steps 1–7), Student View, Possible Responses tab, and On-the-Fly Assessment (hummingbird icon)
 - Activity 4, screen 2 of 2, Student View, "Escaping a Black Hole" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Mass and Gravity")

[CCC]

Force and Motion unit:

- Lesson 1.6, Activity 3, Instructional Guide (steps 1–10), Student View, and On-the-Fly Assessment (hummingbird icon)
- Lesson 3.2, Activity 4, Instructional Guide (steps 1–4), Student View, and On-the-Fly Assessment (hummingbird icon)

[SEP]

Force and Motion unit:

- Lesson 2.1
 - Activity 2, Instructional Guide (steps 1–16),

simulations.]

		View, and Possible Responses tab Lesson Brief, Digital Resources, "Kinetic Energy and Mass, Kinetic Energy and Velocity copymaster," and simulation Thermal Energy unit: Lesson 3.3, Lesson Brief, Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer"	[Assessment Boundary: Assessment is limited to electric and Magnetic Fields unit: and is limited to qualitative evidence for the existence of fields.]	Student View, and Possible Responses tab Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Investigations of Forces on Different Objects" Thermal Energy unit: Lesson 3.3, Lesson Brief, Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer"
DCI	PS2.B: Types of Interactions ■ Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be mapped by their effect on a test object (a charged object, or a ball, respectively). (MS-PS2-5)	[Magnetic fields] Magnetic Fields unit: Lesson 1.4, Activity 2, "Earth's Geomagnetism" article (paragraphs 1 and 2) Lesson 1.5 Activity 1, Student View, Possible Responses tab, and simulation Activity 2, screen 2 of 2, Instructional Guide (step 10) and Student View Activity 3, Student View and simulation Activity 4, Instructional Guide (steps 1–5), Student View, Modeling Tool: Attracting and "Repelling Magnets copymaster" Activity 5, Student View, "Painting with		

		Static Electricity" article	
		[Gravitational fields] **Magnetic Fields* unit: • Lesson 3.2, Activity 4, screen 2 of 2, Student View and "Escaping a Black Hole" article	
		[Electric fields] Force and Motion Engineering Internship unit: • Ch.1, Day 1, Lesson Brief, Digital Resources, Futura Mechanical Engineer's Dossier, Ch. 6, "Additional Resources: Physics of Falling" article	
CC	Cause and Effect Cause and effect relationships may be used to predict phenomena in natural	 Thermal Energy unit: Lesson 3.3, Activity: Setting Up the Thermal Energy and Size Demo, Instructional Guide (step 10) 	
	or designed systems. (MS-PS2-5)	 Lesson 1.3, Activity 5, Student View and Sorting Tool activity: Cause and Effect Lesson 1.6, Activity 3, Teacher Support tab ("Background, Crosscutting Concepts: Cause and Effect") 	
		Phase Change Engineering Internship unit: • Ch.1, Day 5 • Activity: Testing Incubator Designs, Instructional Guide (steps 1–3) and	
		BabyWarmer Design Tool	

	o Lesson Brief , Digital	
	Resources,	
	"BabyWarmer Data	
	sheet copymaster"	

MS-PS3 Energy

Sc	ience and Engineering			Publisher Citations
	Practices isciplinary Core Ideas rosscutting Concepts	Publisher Citations	Expectation	
SEP	Analyzing and Interpreting Data Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Construct and interpret graphical displays of data to identify linear and nonlinear relationships. (MS-PS3-1)	Force and Motion unit: Lesson 4.3 Activity 5, Instructional Guide (steps 1–9), Student View,simulation, and Possible Responses tab Lesson Brief, Digital Resources, "Kinetic Energy and Mass copymaster" and "Kinetic Energy and Velocity copymaster"	MS-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships	 [CCC] Force and Motion unit: Lesson 2.1, Activity 2, Instructional Guide (steps 1–14), Student View, Possible Responses tab, and Onthe-Fly Assessment (hummingbird icon) [DCI, CCC] Force and Motion unit: Lesson 3.3, Activity 4, screen 2 of 2, Student View, "Wrecking Ball" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Mass and Speed in Relation to Kinetic Energy") [SEP, DCI] Force and Motion unit: Lesson 4.3,
DCI	PS3.A: Definitions of Energy Motion energy is properly called kinetic energy; it is	Force and Motion unit: ■ Lesson 3.3, Activity 4, screen 2 of 2, Student View and "Wrecking Ball" article (paragraph 5)	between kinetic energy and mass separately from kinetic	O Activity 5, Instructional Guide (steps 1–9), Student View, Possible Responses tab, simulation, and Teacher Support tab ("Assessment, Assessment Opportunity:

	proportional to the mass of the moving object and grows with the square of its speed. (MS-PS3-1)	 Lesson 4.3, Activity 5, Instructional Guide (steps 1–9), Student View, Possible Responses tab, simulation, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Mass and Velocity in Relation to Kinetic Energy") Harnessing Human Energy unit: Lesson 1.3, Activity 2, screens 1–3 of 3, Instructional Guide (steps 1–9, 12–17), Student View and Sorting Tool activity: Types of Energy 	energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.]	Student Understanding of Mass and Velocity in Relation to Kinetic Energy")
CC	Scale, Proportion, and Quantity Proportional relationships (e.g., speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-1)	Thermal Energy unit: Lesson 3.2, Activity 2, Instructional Guide (steps 1–9), Student View, and "Thermal Energy Is NOT Temperature" article Force and Motion unit: Lesson 1.4, Activity 3, Teacher Support tab ("Instructional Suggestion, Going Further: Mathematical Thinking") Lesson 2.1, Activity 3, Teacher Support tab ("Instructional Suggestion, Going Further: Mathematical Thinking") Magnetic Fields unit: Lesson 2.2, Activity 2, Teacher Support tab ("Instructional Suggestion, Going Further: Mathematical Thinking") Phase Change unit:	terinis pail.j	

	 Lesson 1.3, Activity 2, Teacher Support tab ("Background, Crosscutting Concept: Scale, Proportion, and Quantity") Lesson 3.3, Activity 3, Student View, Possible Responses tab, and Modeling Tool activity: Methane Lake 2002–2007 	
--	---	--

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts		Publish	er Citations	Performance Expectation	Pub	lisher Citations
Models Modeling on K–5 ar to develop and revisit describe, predict me phenome systems. Deve	elop a model escribe eservable chanisms. (MS-	Force and Motion Lesson 1.2 View and ("Backgrou Goals: Dev	ctivity 2, screen 2 of 2, structional Guide (steps 0–13) and Teacher upport tab Background, edagogical Goals: eveloping Models") esson Brief, Digital esources, "Modeling olecules and Phases opymaster" ctivity 5, Student View unit: 2, Activity 5, Student Teacher Support tab und, Pedagogical veloping Models")	MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential	[DCI, SEP, CCC Magnetic Field Lesson [DCI, CCC] Magnetic Field Lesson	Activity 4, Instructional Guide (steps 1–8), Student View, Possible Responses tab, and On-the-Fly Assessment (hummingbird icon) Lesson Brief, Digital Resources, "Modeling Tool: Spacecraft Launch Energy copymaster"

		View, and Teacher Support tab ("Background, Pedagogical Goals: Magnetic Fields Modeling Tool" and "Instructional Suggestion, Modeling Tool: Extra Support") Lesson Brief, Digital Resources, "Modeling Tool: Attracting and Repelling Magnets copymaster" Lesson 1.6 Activity 4, Instructional Guide (steps 1–4) and Student View Lesson Brief, Modeling Tool: "Attracting and Repelling Magnets copymaster" Chemical Reactions unit: Lesson 3.4 Activity 3, Instructional Guide (steps 1–5) and Student View Lesson Brief, Digital Resources, "Modeling Tool: Products of the Reaction copymaster"	energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orient ation of a magnet, and a balloon with static electrical	Spacecraft Launches copymaster" Lesson 4.3, Activity 4, Student View and Possible Responses tab Lesson Brief, Digital Resources, "Rubrics for Final Written Argument" [DCI] Force and Motion unit: Lesson 3.3, Activity 4, Student View, "Wrecking Ball" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Mass and Speed in Relation to Kinetic Energy")
DCI	PS3.A: Definitions of Energy A system of objects may also contain stored (potential) energy, depending on their relative positions. (MS-PS3-2)	Magnetic Fields unit: ■ Unit Guide, Unit Overview ■ Lesson 2.1 □ Activity 1, Student View and Possible Responses tab □ Activity 2, "The Potential for Speed" article □ Activity 4, Student View and simulation ■ Lesson 2.3	charge being brought closer to a classmate's hair. Examples of models could include representation	

DCI	PS3.C: Relationship Between Energy and	 Activity 1, Student View, Possible Responses tab Lesson Brief, Digital Resources, "Modeling Tool: Potential and Kinetic Energy copymaster" Activity 2, Instructional Guide (steps 1–10), Student View, Possible Responses tab, and simulation Activity 3, Instructional Guide (steps 1–11), Student View, and Possible Responses tab Magnetic Fields unit: Lesson 2.1, Activity 2, 'The Potential for Speed" article 	s, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]	
	Forces ■ When two objects	 Lesson 2.3, Activity 2, screen 2 of 3, Instructional Guide (steps 5– 		
	interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. (MS-PS3-2)	8) and Student View Force and Motion unit: Lesson 3.1, Activity 2, "Crash! Forces in Collision" article and Teacher Support tab ("Background, Science Note: About Collisions") Lesson 3.3, Activity 4, Student View, "Wrecking Ball" article, and Teacher Support tab ("Rationale, Pedagogical Goals: Additional Reading About Kinetic Energy")		
CC C	Systems and System Models Models can be used to represent systems and their interactions – such as inputs,	 Magnetic Fields unit: Lesson 1.3, Activity 4, screen 1 of 2, Instructional Guide (steps 1–5) and Teacher Support tab ("Background, Crosscutting Concepts: Systems and System Models") 		

processes, and outputs – and energy and matter flows within systems. (MS-PS3-2)	 Harnessing Human Energy unit: Lesson 2.1, Activity 3, screen 2 of 3, Instructional Guide (step 4) and Student View 	
---	---	--

MS-PS3 Energy

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Apply scientific ideas or principles to design,	Force and Motion Engineering Internship unit: • Unit Guide, Unit Overview • Ch.1, Day 6 • Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool • Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" • Lesson 8, Activity: Revising Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab Phase Change Engineering Internship unit: • Unit Guide, Unit Overview • Ch.1, Day 6 • Activity: Testing Final Designs, Instructional Guide (steps 1–5)	MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box,	 [DCI] Thermal Energy unit: Lesson 3.3, Activity 4, screens 1–2 of 2, Student View, Possible Responses tab, "Dumpling Dilemma: Oil or Water?" article, and Teacher Support tab ("Rationale, Pedagogical Goals: Additional Reading About Thermal Energy and Temperature" and "Assessment, Assessment Opportunity: Student Understanding of How the Nature of a Material Affects Energy Transfer") Lesson 4.3 Activity 4, Student View and Possible Responses tab Lesson Brief, Digital Resources, "Thermal Energy Rubrics for Assessing Students' Final Written Arguments" [SEP, DCI]

DCI	construct, and test a design of an object, tool, process or system. (MS-PS3- 3) PS3.A: Definitions of Energy Tomporature is a	 Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" Ch.1, Day 8, Activity: Revising Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab Thermal Energy unit: Lesson 2.1, Activity 2, screens 1– 2 of 3, Student View and Lestructional Cuido (steps 6, 0) 	a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include	Force and Motion Engineering Internship unit: • Ch.1, Day 9 • Activity: Finalizing the Proposal, Possible Responses tab • Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster"
	Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-3)	Instructional Guide (steps 6–9) Lesson 3.1 Activity 1, Student View Activity 2, Instructional Guide (steps 1–9), Student View, and "Thermal Energy is NOT Temperature" article Lesson 3.3 Lesson Brief, Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer" Activity 4, screens 1–2 of 2, Student View, Possible Responses tab, "Dumpling Dilemma: Oil or Water?" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of How the Nature of a Material Affects Energy Transfer")	include calculating the total amount of Thermal Energy transferred.] [PE] Phase Change Engine • Ch.1, Day 4: • Activit Incubat Instruct 11), Potential Guide Chemic "Insulat • Lesson Resoun Material copymate [PE, SEP, DCI] Phase Change Engine • Ch.1, Day 9, Auroposal, Post • Ch.1, Day 7, Le Resources, "Pr Rubric"	Phase Change Engineering Internship unit: Ch.1, Day 4: Activity: Analyzing Incubator Materials, Instructional Guide (steps 8– 11), Possible Responses tab, and BabyWarmer Design Tool Activity 2, Instructional Guide (steps 1–6), Futura Chemical Engineer's Dossier, "Insulating Materials" article Lesson Brief, Digital Resources, "Insulating Materials Analysis copymaster" [PE, SEP, DCI] Phase Change Engineering Internship unit: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal
DCI	PS3.B: Conservation of Energy and Energy	Thermal Energy unit: • Lesson 2.3,		Light Waves unit: ■ Lesson 3.3, Activity 3, Instructional
	Transfer	 Activity 2, Student View, Possible Responses tab, and simulation 		Guide (steps 1–5), Student View, Possible Responses tab, and On-the-

	 Energy is spontaneously transferred out of hotter regions or objects and into colder ones. (MS- PS3-3) 	 Activity 3, Student View and "How Air Conditioners Make Cities Hotter" article (paragraphs 6–8) Lesson 3.1, Activity 2, "Thermal Energy is NOT Temperature" article (paragraph 7) 	Fly Assessment (hummingbird icon) Harnessing Human Energy unit: Lesson 2.2, Activity 4, Instructional Guide (steps 1–8) and Sorting Tool activity: Introducing Energy Transfer
DCI	ETS1.A: Defining and Delimiting an Engineering Problem ■ The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary to MS-PS3-3)	 Change Engineering Internship unit: Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–7, 11–12), Welcome to Futura video, and Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Pre-thinking about Criteria") Ch.1, Day 2, Activity: Modeling Thermal Energy Transfer, Instructional Guide (step 1) and Teacher Support tab ("Background, Engineering Note: Understanding the Difference Between Constraints and Criteria" and "Instructional Suggestion, Engineering Note: Examples of Constraints") Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–9) and Teacher Support tab ("Instructional Suggestion: Providing More Support, Examples of Constraints and Criteria") Force and Motion Engineering Internship unit: Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–7, 11–14), Welcome to Futura video, and Teacher Support tab ("Rationale, Engineering Note: 	

> The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS3-3)

Sorting Tool activity: Introducing Energy Transfer

Light Waves unit:

• Lesson 1.2, Activity 3, Instructional Guide (steps 1–15) and Student View

Thermal Energy unit:

Lesson 2.3, Activity 4, Instructional Guide (steps 4–12)

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts		Publisher Citations	Performance Expectation	Publisher Citations
SEP	Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.	Magnetic Fields unit: ■ Lesson 3.1, Activity 2, Instructional Guide (steps 1–13) and Student View Force and Motion unit: ■ Lesson 2.1 □ Activity 2, Instructional Guide (steps 1–16), Student View, and Possible Responses tab □ Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Investigations of Forces on Different Objects" Thermal Energy unit:	MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the	 [CCC] Thermal Energy unit: Lesson 3.2, Activity 2, Instructional Guide (steps 1–9), Student View, and "Thermal Energy Is NOT Temperature" article Force and Motion unit: Lesson 2.1, Activity 2, Instructional Guide (steps 1–14), Student View, Possible Responses tab, and Onthe-Fly Assessment (hummingbird icon) [SEP, DCI] Thermal Energy unit: Lesson 3.3
	 Plan an investigation individually and collaboratively, 	 Lesson 3.3 Lesson Brief Materials and Preparation, Preparation 	particles as measured by the temperature	 Lesson Brief, Digital Resources: ■ Materials and Preparation,

Publisher: **Amplify Education Amplify Science** Program Title:

> and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded. and how many data are needed to support a claim. (MS-PS3-4)

Connections to

Nature of Science

Scientific Knowledge

is Based on Empirical

knowledge is

based upon

logical and

conceptual

connections

(MS-PS3-4)

between evidence

and explanations

Evidence

Science

Before the Day of the Lesson, step 10.

- Digital Resources. "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer")
- Activity 4, "Dumpling Dilemma: Oil or Water?" article

Force and Motion unit:

- Lesson 3.4, Activity 2, Instructional Guide (steps 1–6), Student View. Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science")
- Lesson 4.3, **Activity 6**, Student View

Light Waves unit:

Lesson 3.6, Activity 3, Instructional Guide (steps 1-6). Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science")

Thermal Energy unit:

Lesson 3.4,

of the sample. [Clarification

Statement:

Examples of

experiments

could include

comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment. or the same material with different masses when a specific amount of

Preparation Before the Day of the Lesson, step 10

- Digital Resources. "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer"
- Activity 4, "Dumpling Dilemma: Oil or Water?" article

[DCI, CCC]

Thermal Energy unit:

- Lesson 3.4
 - Activity 2, Instructional Guide (steps 1–5), Student View, Possible Responses tab, and On-the-Fly Assessment (hummingbird icon)
 - Lesson Brief. Digital Resources, "Modeling Tool: Differences in Temperature Change copymaster"

[DCI]

Thermal Energy unit:

• Lesson 4.3, Activity 4, Student View. Possible Responses tab, and "Rubrics for Assessing Students" Final Written Arguments"

		 Activity 2, screen 1 of 2, Instructional Guide (steps 1–5), Student View, and Possible Responses tab; screen 2 of 2, Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") Lesson Brief, Digital Resources, "Modeling Tool: Differences in Temperature Change copymaster" 	energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of Thermal Energy transferred.]	[SEP] Force and Motion unit: • Lesson 2.1 • Activity 2, Instructional Guide (steps 1–16), Student View, and Possible Responses tab • Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Investigations of Forces on Different Objects"
		Phase Change unit:		
		 Lesson 2.3, Activity 3, Instructional Guide (steps 1–3), Student View, and Possible Responses tab 		
DCI	PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-4)	Thermal Energy unit: Lesson 2.1, Activity 2, screens 1–2 of 3, Student View, Instructional Guide (steps 6–9) Lesson 3.1 Activity 1, Student View Activity 2, Instructional Guide (steps 1–9), Student View, and "Thermal Energy is NOT Temperature" article Lesson 3.3 Lesson Brief, Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer" Activity 4, screens 1–2 of 2, Student View, Possible		

		Responses tab, "Dumpling Dilemma: Oil or Water?" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of How the Nature of a Material Affects Energy Transfer")
DCI	PS3.B: Conservation	Thermal Energy unit:
DCI	of Energy and Energy Transfer The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. (MS-PS3-4)	Lesson 3.3, Activity: Setting up the Thermal Energy and Size Demo, Instructional Guide (steps 1–10) Activity 2, Instructional Guide (steps 1–11), Student View, and simulation Lesson Brief, Materials and Preparation, Preparation Before the Day of the Lesson, step 10 Digital Resources, "Planning and Conducting Investigations of Thermal Energy Transfer copymaster" and "Rubrics for Assessing Students' Investigations of Thermal Energy Transfer" Activity 4, "Dumpling Dilemma: Oil or Water?"

Publisher: **Amplify Education** Amplify Science Program Title:

СС	Scale, Proportion,	Thermal Energy
С	and Quantity Proportional relationships (e.g., speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-4)	Lesson 3.2 Instruction Student Vi Energy Is article Force and Motion Lesson 1.4 Support ta Suggestion Mathemati Lesson 2.7 Support ta Suggestion Mathemati Magnetic Fields 1.
	1 33-4)	Lesson 2.2 Support ta Suggestio Mathemat
		Phase Change un Lesson 1.3

unit:

3.2, **Activity 2,** onal Guide (steps 1–9), √iew, and "Thermal NOT Temperature"

n unit:

- .4, Activity 3, Teacher ab ("Instructional on, Going Further: tical Thinking")
- 1.1, **Activity 3,** Teacher ab ("Instructional on, Going Further: tical Thinking")

unit:

2.2, Activity 2, Teacher ab ("Instructional on, Going Further: tical Thinking")

ınit*:*

- .3, Activity 2, Teacher Support tab ("Background, Crosscutting Concept: Scale, Proportion, and Quantity")
- Lesson 3.3,, **Activity 3,** Student View, Possible Responses tab, and Modeling Tool activity: Methane Lake 2002-2007

Science and Engineering		Performance	Publisher Citations
Practices	Publisher Citations	Expectation	
Disciplinary Core Ideas	Publisher Citations		
Crosscutting Concepts			

SEP Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a

from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

■ Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon. (MS-PS3-5)

SEP Connections to Nature of Science

Force and Motion unit:

- Chapter 4, Chapter Overview
- Lesson 4.2, Activity 3, Instructional Guide (steps 1–11) and Student View
- Lesson 4.3, Activity 4, Instructional Guide (steps 1–5) and Student View

Light Waves unit:

- Chapter 4, Chapter Overview
- Lesson 4.2, Activity 3, Instructional Guide (steps 1–12) and Student View
- Lesson 4.3, Activity 4, Instructional Guide (steps 1–3), Student View, and Possible Responses tab

Thermal Energy unit:

- Chapter 4, Chapter Overview
- Lesson 4.2, Activity 3, Instructional Guide (steps 1–13) and Student View
- Ch. 4 Lesson 4.3, Activity 4, Instructional Guide (steps 1–4), Student View, and Possible Responses tab

Force and Motion Engineering Internship unit:

- Ch.1, Day 7, Activity: Introducing the Proposal, Instructional Guide (steps 1–4)
- Ch.1, Day 9, Activity: Finalizing the Proposal, Instructional Guide (steps 1–2) and Possible Responses tab

Force and Motion unit:

Lesson 3.4, **Activity 2**, Instructional Guide (steps 1–6), Student View, Possible Responses tab, and Teacher Support tab ("Rationale,

MS-PS3-5. Construct. use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.1 [Assessment

[DCI, SEP, CCC]

Thermal Energy unit:

 Lesson 4.3, Activity 4, Student View, Possible Responses tab, and "Rubrics for Assessing Students' Final Written Arguments"

Harnessing Human Energy unit:

 Lesson 2.1, Activity 3, Instructional Guide (steps 1–16), Student View, Possible Responses tab, and simulation

[DCI]

Force and Motion unit:

 Lesson 3.3, Activity 4, screen 2 of 2, Student View, "Wrecking Ball" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Mass and Speed in Relation to Kinetic Energy")

Magnetic Fields unit:

- Lesson 2.4,
 - Activity 4, Instructional Guide (steps 1–8), Student View, Possible Responses tab, and On-the-Fly (hummingbird icon)
 Assessment
 - Lesson Brief, Digital
 Resources, "Modeling Tool:
 Spacecraft Launch Energy copymaster"

Thermal Energy unit:

• Lesson 2.4, **Activity 5**, Student View. Possible Responses tab.

Boundary:

	Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations (MS-PS3-5)	Pedagogical Goals: Understanding the Nature of Science") Lesson 4.3, Activity 6, Student View Light Waves unit: Lesson 3.6, Activity 3, Instructional Guide (steps 1–6), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") Thermal Energy unit: Activity 2, Instructional Guide (steps 1–5), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") Lesson Brief, Digital Resources, "Modeling Tool: Differences in Temperature Change copymaster"	Assessment does not include calculations of energy.]	"Molecule Collisions and Newton's Cradle" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of the Transfer of Motion Energy")
		 Phase Change unit: Lesson 2.3, Activity 3, Instructional Guide (steps 1–3), Student View, Possible Responses tab, and Teacher Support tab ("Instructional Suggestion, Going Further: Correlation and Causation") 		
DCI	PS3.B: Conservation of Energy and	Thermal Energy unit: ■ Lesson 2.3,		
	Energy Transfer	 Activity 2, Student View 		
	When the motion	and simulation		
	energy of an	and "How Air Conditioners		

	object changes, there is inevitably some other change in energy at the same time. (MS-PS3–5)	Make Cities Hotter" article, paragraphs 3–8 • Activity 4, screens 1–3 of 3, Instructional Guide (steps 1–11) • Lesson 2.4, Activity 5, Student View, Possible Responses tab, "Molecule Collisions and Newton's Cradle" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of the Transfer of Motion Energy")	
		Magnetic Fields unit: ■ Lesson 2.2, Activity 3, Instructional Guide (steps 1–10) and Student View ■ Lesson 2.4 □ Activity 4, Instructional Guide (steps 1–8), Student View and Possible Responses tab □ Lesson Brief, Digital Resources, "Modeling Tool: Spacecraft Launch Energy copymaster"	
		Force and Motion unit: • Lesson 3.3, Activity 4, screen 2 of 2, Student View and "Wrecking Ball" article	
CC	Energy and Matter ■ Energy may take different forms (e.g., energy in fields, Thermal Energy unit: energy of motion). (MS-PS3–5)	 Harnessing Human Energy unit: Unit Guide, Unit Overview Lesson 1.3 Activity 2, Instructional Guide (steps 1–7), Student View, and Sorting Tool activity: Types of Energy Activity 3, Instructional Guide (steps 1–6) and Student View 	

o Activity 4, Instructional Guide (steps 1-3) and Student View • Lesson 2.1, Activity 3, screen 2 of 3, Instructional Guide (steps 1–17), Student View, Possible Responses tab, and simulation Magnetic Fields unit: • Lesson 2.2 Activity 2, Instructional Guide (steps 1-12), Student View, and "The Potential for Speed" article Activity 3, Instructional Guide (steps 1-10) and Student View Light Waves unit: • Lesson 1.2, **Activity 3**, Instructional Guide (steps 1–4) and Student View Thermal Energy unit: • Lesson 2.3 Activity 1, Student View and simulation o **Activity 2, Instructional** Guide (steps 1-6), Student View, Possible Responses tab, and simulation o Activity 3, Instructional Guide (steps 1-7), Student View, Possible Responses tab, and "How Air **Conditioners Make Cities**

MS-PS4 Waves and Their Applications in Technologies for Information Transfer

Hotter" article

Science and Engineering		Performance	Publisher Citations
Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Expectation	
SEP Using Mathematics and Computational Thinking Mathematical and computational thinking at the 6–8 level builds on K–5 and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments. Use mathematical representations to describe and/or support scientific conclusions and design solutions. (MS-PS4-1)	Light Waves unit: Lesson 2.2, Activity 4, Student View, Possible Responses tab, and simulation Lesson 2.3 Activity 3, Instructional Guide (steps 1–9), Student View, Possible Responses tab, and simulation Activity: Video: The Shape of Waves, The Shape of Waves video Activity 4, Instructional Guide (steps 1–7), Student View, and Teacher Support tab ("Background, Pedagogical Goals: Reflecting on How Light Waves are Different") Force and Motion unit: Lesson 4.3, Activity 5, Instructional Guide (steps 1–9) and Student View Force and Motion Engineering Internship unit: Ch.1, Day 7, Activity: Outlining Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab Thermal Energy unit: Lesson 2.4, Activity 3, Instructional Guide (steps 1–10) and Student View Lesson 3.4	MS-PS4-1. Use mathematical representation s to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. [Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment does not include electromagneti c waves and is limited to	Lesson 2.4 Activity 2, Instructional Guide (steps 1–10), Student View, and Possible Responses tab Lesson Brief, Digital Resources, "Modeling Tool: Light's Effect on Genetic Material copymaster" and simulation SEP Force and Motion Engineering Internship unit: • Ch.1, Day 9 Activity: Finalizing the Proposal, Possible Responses tab Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster" Thermal Energy unit: • Lesson 3.4 Activity 2, Instructional Guide (steps 1–5), Student View, Possible Responses tab, and On-the-Fly Assessment (hummingbird icon) Lesson Brief, Digital Resources, "Modeling Tool:

ern.	Connections to	 Activity 2, Instructional Guide (steps 1–5), Student View, and Possible Responses tab Lesson Brief, Digital Resources, "Modeling Tool: Differences in Temperature Change copymaster" Force and Motion unit:	standard repeating waves.]	Differences in Temperature Change copymaster" [CCC] Chemical Reactions unit: Lesson 1.3, Activity 4, Instructional Guide (steps 1–7), Student View, Possible Responses tab, Sorting
SEP	Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS4-1)	 Lesson 3.4, Activity 2, Instructional Guide (steps 1–6), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") Lesson 4.3, Activity 6, Student View Lesson 3.6, Activity 3, Instructional Guide (steps 1–6), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") Thermal Energy unit: Lesson 3.4 Activity 2, Instructional Guide (steps 1–5), Student View, Possible Responses tab, and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") Lesson Brief, Digital Resources, "Modeling Tool: Differences in Temperature Change copymaster" Phase Change unit: 		Tool: Evaluating Evidence, and Onthe-Fly Assessment (hummingbird icon) Thermal Energy unit: Lesson 2.4 Activity 1, Student View Activity 2, screen 1 of 2, Instructional Guide (steps 1–8), Student View, Possible Responses tab, and simulation

 Activity 1, Student View Activity 2, screen 1 of 2, Instructional Guide (steps 1– 8), Student View, Possible Responses tab, and simulation 	
 Chemical Reactions unit: Lesson 1.3, Activity 4, Instructional Guide (steps 1–7), Student View, Possible Responses tab, and Sorting Tool: Evaluating Evidence 	

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop and use a model to describe phenomena. (MS-PS4-2)	Phase Change unit: ■ Lesson 1.3 □ Lesson Brief, Digital Resources, "Modeling Molecules and Phases copymaster" □ Activity 2, screen 2 of 2, Instructional Guide (steps 11–13) □ Activity 5, Student View Force and Motion unit: ■ Lesson 1.2, Activity 5, Student View ■ Lesson 3.2 □ Activity 1, Student View, Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Discussing Prior Knowledge About Collision Forces") □ Activity 5, Student View	MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. [Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could	 Light Waves unit: Lesson 2.3, Activity 5, Student View, "Why No One in Space Can Hear You Scream" article, and Teacher Support tab (" Assessment, Assessment Opportunity: Student Understanding of How Sound Waves Travel") Lesson 2.4, Activity 2, Instructional Guide (steps 6–10), Student View, Possible Responses tab, simulation, and On-the-Fly Assessment (hummingbird icon) Lesson 4.3, Activity 4, Student View, Possible Responses tab, and "Rubrics for Final Written Argument" [SEP] Magnetic Fields unit: Lesson 3.3

		Harnessing Human Energy unit:	include	o Activity 3, Instructional
		 Lesson 3.2, Activity 2, Instructional Guide and Student View Chemical Reactions unit: Lesson 2.3 Activity 3, Instructional Guide (steps 1–7) and Student View Lesson Brief, Digital Resources, "Modeling Tool: How the Rust Formed copymaster" Lesson 3.4, Activity 3, Instructional Guide (steps 1–5) and Student View Lesson Brief, Digital Resources, "Modeling Tool: Products of the Reaction copymaster" 	drawings, simulations, and written descriptions.] [Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.]	Guide (steps 1–5), Student View, Possible Responses tab, and On-the-Fly Assessment (hummingbird icon) Lesson Brief, Digital Resources, "Modeling Tool: Spacecraft Launches copymaster" Force and Motion unit: Lesson 2.3 Activity 3, Instructional Guide (steps 1–13), Student View, Possible Responses tab, On-the-Fly Assessment (hummingbird icon), Modeling Tool activity: Claim 1, Ch. 2, and Modeling Tool activity: Claim 2, Ch. 2
		Force and Motion unit: ■ Lesson 2.3, Activity 3, screen 1–2 of 2, Student View, Modeling Tool activity: Claim 1, Ch. 2 and Modeling Tool activity: Claim 2, Ch. 2		Phase Change unit: ■ Lesson 1.3 □ Lesson Brief, Digital Resources, "Modeling Molecules and Phases
DCI	PS4.A: Wave Properties A sound wave needs a medium through which it is transmitted. (MS-PS4-2)	Light Waves unit: Lesson 2.3, Activity 5, Student View, "Why No One in Space Can Hear You Scream" article Lesson 3.2, Activity 4, "Making Waves at Swim Practice" article (paragraphs 1 and 2)		copymaster" Activity 2, screen 2 of 2, Instructional Guide (steps 11–13) Activity 5, Student View [CCC] Force and Motion Engineering Internship
DCI	PS4.B: Electromagnetic Radiation When light shines on an	[Light absorption, reflection, and transmission] Light Waves unit: Lesson 3.1, Activity 3, screens 1–2 of 2, Instructional Guide (steps 1–7), Student View, and simulation		unit: • Ch.1, Day 9 • Activity: Finalizing the Proposal, Possible Responses tab

object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and the frequency (color) of the light. (MS-PS4-2)

- The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. (MS-PS4-2)
- A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light

[The path that light travels ...]

Light Waves unit:

 Lesson 3.1, Activity 2, screens 1–3 of 3, Instructional Guide (steps 5–20) and Student View

[Wave model of light] **Light Waves** unit:

- Lesson 2.3
 - Activity 3, screen 1 of 3, Instructional Guide (steps 1– 7), Student View, and simulation
 - Activity: Video: The Shape of Waves, The Shape of Waves video
 - Activity 4, screen 1 of 2, Instructional Guide (steps 1– 5)
 - Lesson 3.2, Activity 4, screen 2 of 2, Student View, and "Making Waves at Swim Practice" article

[Light can travel through space] **Light Waves** unit:

- Lesson 2.3, Activity 5, Student View and "Why No One in Space Can Hear You Scream" article
- Lesson 3.2, Activity 4, screen 2 of 2, "Making Waves at Swim Practice" article (paragraph 4)

Lesson Brief, Digital Resources, "Printable Proposal Rubric"

Phase Change Engineering Internship unit:

- Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab
- Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric"

	at a surface between media. (MS-PS4-2) However, because light can travel through space, it cannot be a matter wave, like sound or water waves. (MS-PS4-2)	
CC	Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS4-2)	 Force and Motion Engineering Internship unit: Ch.1, Day 3, Activity: Revising the Egg Drop Model Designs, Instructional Guide (steps 6–9) and Teacher Support tab ("Background, Crosscutting Concepts: Structure and Function") Phase Change Engineering Internship unit: Ch.1, Day 2, Activity 2, and Futura Chemical Engineer's Dossier, "Phase Change Materials" article Ch.1, Day 4, Activity: Analyzing Incubator Material, Instructional Guide (steps 1–11) and BabyWarmer Design Tool
		 Chemical Reactions unit: Lesson 2.1, Activity 5, Student View and "Synthetic Materials: Making Substances in the Lab" article

Publisher Citations		Publisher Citations	
---------------------	--	---------------------	--

Disc	nce and Engineering Practices ciplinary Core Ideas sscutting Concepts		Performance Expectation	
SEP	Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 6–8 builds on K–5 and progresses to evaluating the merit and validity of ideas and methods. Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings. (MS-PS4-3)	 Lesson 3.1 Activity: Playing Burning Paper, Instructional Guide (steps 1–3) and Burning Paper video Activity 2, Instructional Guide (steps 1–2) and "What Happens When Fuels Burn?" article Lesson 3.2 Activity 2, Instructional Guide (steps 1–6) and simulation Activity 3, Instructional Guide (steps 1–8) and "What Happens When Fuels Burn?" article Activity 4, Instructional Guide (steps 1–6) and Student View 	MS-PS4-3. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes.	Light Waves unit: Lesson 3.1, Activity 4, Student View, "How Fiber-optic Communication Works" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of the Reliability of Digitized Signals") [SEP] Chemical Reactions unit: Lesson 3.1 Activity: Playing Burning Paper, Instructional Guide (steps 1−3) and Burning Paper video Activity 2, Instructional Guide (steps 1−2) and "What Happens When Fuels Burn?" article Lesson 3.2, Activity 4, Instructional Guide (steps 1−4), Student View, and On-the-Fly Assessment (hummingbird icon) [CCC] Force and Motion Engineering Internship unit:
DCI	PS4.C: Information Technologies and Instrumentation Digitized signals (sent as wave pulses)	Light Waves unit: ■ Lesson 3.1, Activity 4, Student View, and "How Fiber-optic Communication Works" article	Examples could include using fiber optic cable to transmit light pulses, radio	 Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric"

CC	are a more reliable way to encode and transmit information. (MS-PS4-3) Structure and	Force and Motion Engineering Internship unit:	wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer	Phase Change Engineering Internship unit: Ch.1, Day 9 Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric"
С	Function ■ Structures can be designed to serve particular functions. (MS-PS4-3)	 Ch.1, Day 3, Activity: Revising the Egg Drop Model Designs, Instructional Guide (steps 6–9) and Teacher Support tab ("Background, Crosscutting Concepts: Structure and Function") Phase Change Engineering Internship unit: Ch.1, Day 2, Activity 2, Futura Chemical Engineer's Dossier, "Phase Change Materials" article 	screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the	
		 Ch.1, Day 4, Activity: Analyzing Incubator Material, Instructional Guide (steps 1–11) and Teacher Support tab ("Rationale, Connection to Crosscutting Concept of Structure and Function") Chemical Reactions unit: Lesson 2.1, Activity 5, Student View, and "Synthetic Materials: Making Substances in the Lab" article 	specific mechanism of any given device.]	
CC	Connections to Engineering, Technology, and Applications of Science	Phase Change unit: • Lesson 1.2, Activity: Investigating Methane on Titan, Instructional Guide (steps 1–6) and Studying a Distant Moon video		
	Influence of Science, Engineering, and	Light Waves unit: ■ Lesson 1.2, Activity: Interview with a Spectroscopist, Interview with a Spectroscopist video		

MS-ETS1 Engineering Design

Disc	rce and Engineering Practices iplinary Core Ideas sscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Asking Questions and Defining Problems Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. Define a design problem that can be solved through the development of an object, tool, process, or system and includes multiple criteria and constraints,	 Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–7, 11–12), Welcome to Futura video, and Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Prethinking about Criteria") Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–9) and Teacher Support tab ("Instructional Suggestion: Providing More Support: Examples of Constraints and Criteria") Force and Motion Engineering Internship unit: Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–7, and 11–14), Welcome to Futura video, and Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Pre-thinking about Criteria") Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–6) and Teacher Support tab ("Instructional Suggestion, Providing More Support: Examples of Constraints and Criteria") 	MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	[DCI, SEP] Phase Change Engineering Internship: • Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab • Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric" Force and Motion Engineering Internship unit: • Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab • Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster"

	including	
	scientific	
	knowledge	
	that may limit	
	possible	
	solutions. (MS-	
	ETS1-1)	
DCI	,	Phase Change Engineering Internship unit:
DCI	ETS1.A: Defining	Ch.1, Day 1, Activity: Introducing
	and Delimiting	Futura , Instructional Guide (steps 2–7,
	Engineering	11–12), Welcome to Futura video, and
	Problems	Teacher Support tab ("Instructional
	The more	Suggestion, Pedagogical Goals: Pre-
	precisely a	thinking about Criteria") Ch.1, Day 10, Activity: Applying
	design task's	Engineering Skills, Instructional
	criteria and	Guide (steps 1–9) and Teacher
	constraints	Support tab ("Instructional Suggestion,
	can be	Providing More Support: Examples of
	defined, the	Constraints and Criteria")
	more likely it is	Force and Motion Engineering Internship
	that the	unit:
	designed	Ch.1, Day 1, Activity: Introducing
	solution will be	Futura, Instructional Guide (steps 2–7,
	successful.	and 11–14), Welcome to Futura video,
	Specification	and Teacher Support tab ("Rationale,
	of constraints	Engineering Note: Understanding the Difference Between Constraints and
	includes	Criteria" and "Instructional Suggestion,
	consideration	Pedagogical Goals: Pre-thinking about
	of scientific	Criteria," and "Instructional Suggestion,
	principles and	Engineering Note: Examples of
	other relevant	Constraints")
	knowledge	 Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional
	that are likely	Guide (steps 1–6) and Teacher
	to limit	Support tab ("Instructional Suggestion,
	possible	Providing More Support: Examples of
	solutions. (MS-	Constraints and Criteria")
	ETS1-1)	

CC Influence of Science, Engineering, and Technology on Society and the Natural World

- All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ETS1-1)
- The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate.

Chemical Reactions unit:

 Lesson 2.1, Activity 5, Student View, and "Synthetic Materials: Making Substances in the Lab" article

Light Waves unit:

 Lesson 3.6, Activity 2, Instructional Guide (steps 1–12)

Phase Change Engineering Internship:

- Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–7, 11–12), Welcome to Futura video, and Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Prethinking about Criteria")
- Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–9) and Teacher Support tab ("Instructional Suggestion, Providing More Support: Examples of Constraints and Criteria")

		natural Resources, "and economic conditions. (MS-ETS1-1)			
--	--	--	--	--	--

Science and		Performance	Publisher Citations
Engineering Practice Disciplinary Core Ide Crosscutting Concept	as Publisher Citations	Expectation	
Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refuclaims for either explanations or solutions about natural and designed world. Evaluate competing design solutions based on jointly	 Ch.1, Day 6 Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Ch.1, Day 8, Activity: Revising Design Decisions, Instructional Guide (steps 1–7) and Possible Responses tab Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–6) 	MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	[DCI, SEP] Phase Change Engineering Internship: • Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab • Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric" Force and Motion Engineering Internship unit: • Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab • Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster"

	developed and agreed- upon design criteria. (MS- ETS1-2)	 Activity: Outlining Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" Lesson 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–9)
DCI	Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-ETS1-2)	Force and Motion Engineering Internship unit: Ch.1, Day 1, Lesson Brief, Digital Resources, "Video: Engineering Tip: Analyzing Data" Ch.1, Day 6, Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Ch.1, Day 8, Activity: Revising Design Decisions, Instructional Guide (steps 1–7) and Possible Responses tab Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–6) Phase Change Engineering Internship: Ch.1, Day 6 Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Ch.1, Day 7, Activity: Outlining Design Decisions, Instructional Guide

	(steps 1–6) and Possible Responses tab Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide
	(steps 1–9)

Disc	Science and ineering Practices plinary Core Ideas scutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Analyzing and Interpreting Data Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Analyze and interpret data to determine similarities and differences in findings. (MS-ETS1-3)	Force and Motion Engineering Internship unit: Ch.1, Day 5, Activity: Analyzing Results, Instructional Guide (steps 1–4) and Engineering Tip: Analyzing Data video Ch.1, Day 6 Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Magnetic Fields unit: Lesson 3.3 Activity 2, screen 1 of 2, Instructional Guide (steps 1–7) and Student View Lesson Brief, Digital Resources, "USA Evidence Cards copymaster" Light Waves unit: Lesson 2.5, Activity 3, screens 1–3 of 3, Instructional Guide and Student View Chemical Reactions unit:	MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristic s of each that can be combined into a new solution to better meet the criteria for success.	 [DCI, SEP] Phase Change Engineering Internship: Ch.1, Day 9 Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric" Ch.1, Day 8, Lesson Brief, Digital Resources, "Printable Proposal Rubric" Force and Motion Engineering Internship unit: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster"

		 Lesson 1.3, Activity 3, Instructional Guide (steps 6–11) 	
		Phase Change Engineering Internship unit: • Ch.1, Day 6, Activity: Testing Final Designs, Instructional Guide (steps 1–5) and BabyWarmer Design Tool	
DCI	ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-ETS1-3) Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. (MS-ETS1-3)	5) and BabyWarmer Design Tool Force and Motion Engineering Internship unit: • Unit Guide, Unit Overview • Ch.1, Day 6 • Activity: Testing Final Designs, Instructional Guide (steps 1–5) and SupplyDrop Design Tool • Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" • Ch.1, Day 5, Activity: Analyzing Results, Instructional Guide (steps 1–4) and Engineering Tip: Analyzing Data video • Ch.1, Day 8, Activity: Revising Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab Phase Change Engineering Internship unit: • Unit Guide, Unit Overview • Ch.1, Day 5: • Activity: Testing Incubator Designs, Instructional Guide (steps 1–3) and BabyWarmer Design Tool • Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" • Activity: Analyzing Designs, Instructional Guide (steps 1–7) • Ch.1, Day 6	
		 Activity: Testing Final Designs, Instructional Guide (steps 1–5) 	

DCI	ETS1.C:	 Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" Ch.1, Day 7, Activity: Outlining Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab Phase Change Engineering Internship unit:
	Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design. (MS-ETS1-3)	 Unit Guide, Unit Overview Ch.1, Day 1, Lesson Brief, Digital Resources, "Video: Engineering Tip: Optimal Designs" Ch.1, Day 5 Activity: Testing Incubator Designs, Instructional Guide (steps 1–3) and BabyWarmer Design Tool Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" Activity: Analyzing Designs, Instructional Guide (steps 1–6) Ch.1, Day 6, Activity: Testing Final Designs, Instructional Guide (steps 1–5) Lesson Brief, Digital Resources, "BabyWarmer Data copymaster" Force and Motion Engineering Internship unit: Unit Guide, Unit Overview Ch.1, Day 4, Activity: Investigating SupplyDrop, Instructional
		Guide (steps 1–8) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Ch.1, Day 5 Activity: Analyzing Results,

|--|

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop a model to generate data to test ideas about	Phase Change Engineering Internship unit:	MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	 [DCI, SEP] Phase Change Engineering Internship: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric" Force and Motion Engineering Internship unit: Ch.1, Day 9, Activity: Finalizing the Proposal, Possible Responses tab Ch.1, Day 7, Lesson Brief, Digital Resources, "Printable Proposal Rubric copymaster"

	designed systems, including those representing inputs and outputs (MS- ETS1-4)	 Ch.1, Day 2, Activity: Egg Drop Challenge, Instructional Guide (steps 1–7) Ch.1, Day 3, Activity: Revising the Egg Drop Model Designs, Instructional Guide (steps 1–9)
DCI	Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (MS-ETS1-4) Models of all kinds are important for testing solutions. (MS-ETS1-4)	 Unit Guide, Unit Overview Ch.1, Day 1 Activity: Exploring

		(steps 1–6) and Possible Responses
		tab
		Force and Motion Engineering Internship unit:
		 Unit Guide, Unit Overview Ch.1, Day 1, Activity: Exploring SupplyDrop, Instructional Guide (steps 1–4) and SupplyDrop Design Tool Ch.1, Day 2, Activity: Egg Drop Challenge, Instructional Guide (steps 1–8) Ch.1, Day 4 Activity: Investigating SupplyDrop, Instructional Guide (steps 1–8) Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" Ch.1, Day 5, Activity: Analyzing Results, Instructional Guide (steps 1– 4) and Engineering Tip: Analyzing Data video Ch.1, Day 8, Activity: Revising Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab
DCI	ETS1.C:	Phase Change Engineering Internship unit:
501	Optimizing the	Unit Guide, Unit Overview
	Design Solution	Ch.1, Day 1, Lesson Brief, Digital
	■ The iterative	Resources, "Video: Engineering Tips:
	process of	Optimal Designs" ● Ch.1, Day 5
	testing the	On 1, Day 5 Activity: Testing Incubator
	most	Designs, Instructional Guide
	promising	(steps 1–3) and BabyWarmer
	solutions and	Design Tool
	modifying what	 Lesson Brief, Digital Resources, "BabyWarmer
	is proposed on	Data copymaster"
	the basis of	Activity: Analyzing Designs,
	แเษ มสอเอ ปโ	Instructional Guide (steps 1–6)

• Ch.1, Day 6 the test results Activity: Testing Final leads to **Designs**, Instructional Guide greater (steps 1-5) refinement and o **Lesson Brief**, Digital ultimately to Resources, "BabyWarmer Data copymaster" an optimal solution. (MS-Force and Motion Engineering Internship ETS1-4) unit: • Unit Guide, Unit Overview • Ch.1, Day 4, Activity: Investigating SupplyDrop, Instructional Guide (steps 1-8) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data copymaster" • Ch.1, Day 5 Activity: Analyzing Results, Instructional Guide (step 1–4) and Engineering Tip: Analyzing Data video Lesson Brief, Digital Resources, "Results Analysis copymaster" • Ch.1, Day 6 Activity: Testing Final **Designs**, Instructional Guide (steps 1–5) and SupplyDrop Design Tool Lesson Brief, Digital Resources, "SupplyDrop Data

copymaster"