Standards Map for Kindergarten Through Grade Eight Grade 6 Discipline Specific –Next Generation Science Standards

MS-ESS1 Earth's Place in the Universe

Scie	ence and Engineering Practices	Dublish or Citations	Performance Expectation	Publisher Citations	
	sciplinary Core Ideas osscutting Concepts	Publisher Citations			
SEP	Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop and use a model to describe phenomena. (MS-ESS1-1)	Earth's Changing Climate unit: ■ Lesson 1.3, Activity 3, Instructional Guide (steps 5–9), Student View, and Teacher Support tab ("Background, Pedagogical Goals: Developing Models") Earth, Moon, and Sun unit: ■ Lesson 3.1, Activity 2, screen 3 of 3, Instructional Guide (steps 611) and Student View ■ Lesson 1.3 ■ Activity 3, screens 1–2 of 2, Instructional Guide (steps 1–6) and Student View ■ Activity 4, Instructional Guide (steps 1–8) Plate Motion unit: ■ Lesson 2.3, Activity 3, screen 1 of 2, Instructional Guide (steps 1–9) and Student View Ocean, Atmosphere, and Climate unit: ■ Lesson 1.4, Activity 3, Instructional Guide (steps 1–4), Student View, Modeling Tool: 1.4 Different Temperatures, and Possible Responses tab	MS-ESS1-1. Develop and use a model of the Earth-sun-mo on system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]	[DCI, SEP] Earth, Moon, and Sun unit: Lesson 1.3, Activity 3, screen 2 of 2, Instructional Guide (step 7) and On-the-Fly Assessment (hummingbird icon) [DCI, CCC] Earth, Moon, and Sun unit: Lesson 2.4, Activity 3, Instructional Guide (step 9) and On-the-Fly Assessment (hummingbird icon) [DCI] Earth, Moon, and Sun unit: Lesson 4.4 Activity 1, Student View Activity 2, Student View Activity 3, Student View Activity 3, Student View Activity 4, Student View and Possible Responses Lesson Brief, Digital Resources, "Rubrics for Final Written Argument"	
	tandarda Man - Crada & Dissiplina Ca	Doga 1 d		Earth, Moon, and Sun unit:	

DCI	ESS1.A: The Universe and Its Stars • Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)	Earth, Moon, and Sun unit: ■ Lesson 2.3 O Activity 2, Instructional Guide (steps 1–6), Student View, Modeling Tool: Predict Moon Phase, and Possible Responses tab O Activity: Seeing the Earth, Moon, and Sun from Different Angles, Instructional Guide (steps 1–4) O Activity 3, screen 1 of 2, Instructional Guide (steps 1–6) and simulation O Activity 4, Instructional Guide (steps 1–3), Student View, Modeling Tool: Predict Moon Phase, and Possible Responses tab [Apparent motion of the moon] Earth, Moon, and Sun: ■ Lesson 2.2, Activity 2, Instructional Guide (steps 1–14) and Student View ■ Lesson 1.3, Activity 4, Instructional Guide (step 3) [Apparent motion of the sun] Earth, Moon, and Sun unit: ■ Lesson 1.3, Activity 4, Instructional Guide (step 3)	Lesson 3.1, Activity 5, screen 2 of 2, Instructional Guide, Student View, Possible Responses tab, "The Endless Summer of the Arctic Tern" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of the Cause of Earth's Seasons") [SEP] Earth's Changing Climate unit: Lesson 1.3, Activity 3, Instructional Guide (steps 5–9), Student View, and Teacher Support tab ("Background, Pedagogical Goals: Developing Models") [CCC] Geology on Mars unit: Lesson 1.1, Activity: Introducing the Student Planetary Geologist Role, Meet a Planetary Geologist video
		[Apparent motion of the stars] Earth, Moon, and Sun unit: Lesson 4.1, Activity 5, Student View and Possible Responses tab	
DCI	ESS1.B: Earth and the Solar System This model of the solar system can explain eclipses of	[Eclipses of the moon] Earth, Moon, and Sun unit: Chapter 3, Chapter Overview Lesson 3.1 O Activity 2, screen 3 of 3, Instructional Guide (steps 5–11), Student View, and "An	

Amplify Science Program Title: **Ancient Machine for Predicting** the sun and the Eclipses" article moon. Earth's o Activity 3, screen 2 spin axis is fixed of 2, Instructional Guide (steps in direction over 6–11). Student View, simulation the short-term but and Possible Responses tab tilted relative to its [Eclipses of the sun] orbit around the Earth, Moon, and Sun unit: sun. The seasons • Lesson 3.3, **Activity 5**, Student View and are a result of that Teacher Support tab ("Rationale, tilt and are caused Pedagogical Goals: Applying an Understanding of Lunar Eclipses to Explain by the differential Solar Eclipses") intensity of sunlight on [Seasons] different areas of Earth, Moon, and Sun Earth across the Lesson 3.1 o Activity 4, Instructional Guide year. (steps 4-5) and Teacher Support (MS-ESS1-1) tab ("Instructional Suggestion, Providing More Experience: Modeling Seasons" and "Assessment, Assessment Opportunity: Student Understanding of the Cause of Earth's Seasons") o Activity 5, screen 2 of 2, Instructional Guide, Student View, Possible Responses tab, and "The Endless Summer of the Arctic Tern" article [Differential intensity of sunlight] Ocean, Atmosphere, and Climate unit: • Lesson 1.4, Activity 2, Instructional Guide and Student View Earth, Moon, and Sun: CCC **Patterns** Lesson 2.4 o Activity 2, Instructional Guide Patterns can be (step 9-11) and Student View used to identify o Activity 3, Instructional Guide cause-and-effect (steps 8-9) and On-the-Fly Assessment (hummingbird icon)

Publisher:

Amplify Education

	relationships. (MS-ESS1-1)	Geology on Mars unit: • Lesson 1.1, Activity: Introducing the Student Planetary Geologist Role, Instructional Guide	
CC	Connections to Nature of Science	 Earth, Moon, and Sun unit: Lesson 2.4, Activity 2, screen 3 of 3, Instructional Guide (step 12) 	
	Scientific Knowledge Assumes an Order and Consistency in Natural Systems	Geology on Mars unit: • Lesson 1.1, Activity: Introducing the Student Planetary Geologist Role, Instructional Guide	
	Science assumes		
	that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.		
	(MS-ESS1-1)		

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts		Publisher Citations	Performance Expectation	Publisher Citations
SEP	Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to	 Earth's Changing Climate unit: Lesson 1.3, Activity 3, Instructional Guide and Teacher Support tab Earth, Moon, and Sun: Lesson 3.1, Activity 2, screen 3 of 3, 	MS-ESS1-2. Develop and use a model to describe the role of gravity	[DCI] Geology on Mars unit: Lesson 1.1, Activity 5, "Scale in the Solar System" article (paragraphs 1–5)
	developing, using, and	Instructional Guide (steps 6–11) and Student View	in the motions	

	revising models to describe, test, and predict more abstract phenomena and design systems. Develop and use a model to describe phenomena. (MS-ESS1-2)	 Lesson 1.3: Activity 3, screens 1–2 of 2, Instructional Guide (steps 1–6) and Student View Activity 4, Instructional Guide (steps 1–8) Plate Motion unit: Lesson 2.3, Activity 3, screen 1 of 2, Instructional Guide Ocean, Atmosphere, and Climate unit: Lesson 1.4, Activity 3, Instructional Guide, Student View, Modeling Tool: 1.4 Different Temperatures, and Possible Responses tab 	within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and	Lesson 1.3, Activity 4, Instructional Guide (step 2) and On-the-Fly Assessment (hummingbird icon) [DCI, PE] Earth, Moon, and Sun unit: Lesson 2.4, Activity 5, "Gravity in the Solar System" article, Student View, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Gravity in the Solar System and the Galaxy") [SEP]
DCI	ESS1.A: The Universe and Its Stars Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. (MS-ESS1-2) ****Supplemental DCI PS2.B	Earth, Moon, and Sun unit: • Lesson 2.4, Activity 5, "Gravity in the Solar System" article (paragraph 6)	controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions	 Earth, Moon, and Sun unit: Lesson 1.3, Activity 3, screen 2 of 2, Instructional Guide (step 7) and On-the-Fly Assessment (hummingbird icon) [SEP, CCC, DCI] Earth, Moon, and Sun unit: Lesson 2.2, Activity 2, Instructional Guide (steps 1–12), Student View, and On-the-Fly Assessment (hummingbird icon) [CCC]
DCI	ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their	 Earth, Moon, and Sun unit: Lesson 2.4, Activity 5, Student View and "Gravity in the Solar System" article (paragraphs 1–5) 	relative to the size of familiar objects such as their school or state).] [Assessment Boundary: Assessment	

Program Title: **Amplify Science** moons, and does not include asteroids that are Kepler's Laws of held in orbit orbital motion or around the sun the apparent by its retrograde motion of the gravitational pull on them. planets as (MS-ESS1-2) viewed from ***Supplemental Earth.] DCI PS2.B The solar system appears to have formed from a disk of dust and gas, drawn together by gravity. (MS-ESS1-2) Earth, Moon, and Sun: Systems and CC • Lesson 1.3, **Activity 3**, screen 1 of 2, **System Models** C Instructional Guide (steps 1–5) Models can be used • Lesson 1.2 to represent systems o Activity 3, screen 1 of 3, and their interactions. Instructional Guide (steps 1–2) o Activity 4, Student View and "The Solar System is Huge" article Geology on Mars: • Lesson 2.2 o Activity 1, Student View o Activity 2, screen 1 of 2, Instructional Guide (steps 1–5), Student View, and "Investigating Landforms on Venus" article o Activity 3, Instructional Guide (steps 1-12 and Student View o Activity: Reflecting on How Scientists Use Models, Instructional Guide (steps 1–5) o Activity 4, Student View

Publisher:

Amplify Education

Dis	ence and Engineering Practices sciplinary Core Ideas osscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Analyzing and Interpreting Data Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to	Weather Patterns unit: ■ Lesson 3.2 O Activity 3, Instructional Guide (steps 1–8) and Student View O Lesson Brief, Digital Resources, "Storm Evidence Cards A–G copymaster" Geology on Mars:	MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system.	[DCI] Geology on Mars unit: Lesson 1.3, Activity 4, Instructional Guide (step 2) and On-the-Fly Assessment (hummingbird icon) [DCI, CCC] Geology on Mars unit:

investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

> Analyze and interpret data to determine similarities and differences in findings. (MS-ESS1-3)

- Lesson 1.1, Activity 3, screen 2 of 2, Instructional Guide (steps 6–16) and Student View
- **Printable Resources,** "Print Materials (8.5" x 11"), Comparing Rocky Planets Cards, pages 15–19

Earth's Changing Climate unit:

 Lesson 1.5, Activity 2, screens 1–6 of 7, Instructional Guide (steps 1–16) and Student View

Ocean, Atmosphere, and Climate unit:

- Lesson 4.1
 - Activity 2, Instructional Guide (steps 1–8) and Student View
 - Activity 3, Instructional Guide (steps 1–4) and Student View
 - o Activity 4, Instructional Guide (steps 1–3) and Student View
 - Lesson Brief, Digital Resources,
 "Science Seminar Evidence Cards A–E"

Plate Motion Engineering Internship unit:

- Ch.1, Day 5
 - o Activity: Testing Warning
 System Designs, Instructional
 Guide (steps 1–3) and
 TsunamiAlert Design Tool
 - Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster"
 - Activity: Analyzing Designs, Instructional Guide (steps 1–5)

Earth, Moon, and Sun unit:

 Lesson 2.4, Activity 5, Student View and "Gravity in the Solar System" article (paragraphs 1–5)

Geology on Mars unit:

 Lesson 1.1, Activity 5, "Scale in the Solar System" article, paragraphs 1–5

[Clarification] Statement: Emphasis is on the analysis of data from Earth-based instruments. space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere). surface features (such as volcanoes), and orbital radius. Examples of data include statistical information. drawings and photographs, and models.] [Assessment Boundary:

Assessment

 Lesson 1.1, Activity 5, screen 2 of 2, Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of the Scale Properties of Objects in the Solar System")

[CCC]

Plate Motion unit:

 Lesson 3.2, Activity 5, screens 1–2, Student View, Possible Responses tab, Sorting Tool activity: Earth's History, "Steno and the Shark" article, and Teacher Support tab ("Opportunity: Student Understanding of Rock Strata and Geologic Time")

[SEP]

Earth's Changing Climate unit:

 Lesson 1.5, Activity 2, screen 6 of 7, Instructional Guide (step 14) and On-the-Fly Assessment (hummingbird icon)

[SEP]

Weather Patterns unit:

- Lesson 3.2
 - o **Activity 3**, Instructional Guide (steps 1–8) and Student View
 - Lesson Brief, Digital
 Resources, "Storm Evidence
 Cards A–G copymaster"

DCI

ESS1.B: Earth and the Solar System

 The solar system consists of the sun and a collection of objects, including planets, their

Page 8 of 57

Publis Progra	ner: Amplify Education m Title: Amplify Science			
	moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. (MS-ESS1-3) ****Supplemental DCI PS2.B	Lesson 1.3, Activity 4 , Instructional Guide (step 2) and On-the-Fly Assessment (hummingbird icon)	does not include recalling facts about properties of the planets and other solar system bodies.]	
CC C	Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-ESS1-3)	Plate Motion unit: Lesson 3.2, Activity 5, screens 1–2, Student View, Possible Responses tab, Sorting Tool activity: Earth's History, and "Steno and the Shark" article Lesson 3.1, Activity 2, screen 3 of 3, Instructional Guide (steps 6–16), Student View, and Teacher Support tab ("Background, Crosscutting Concept: Scale, Proportion, and Quantity") Earth, Moon, and Sun unit: Lesson 1.2, Activity 4, Instructional Guide, Student View, and "The Solar System is Huge" article Lesson 1.3 Activity 1, Student View Activity 2, Instructional Guide (steps 1–8) Activity 3, screens 1–2 of 2, Instructional Guide (steps 1–8) Activity 3, screens 1–2 of 2, Instructional Guide (steps 1–7) and Student View Earth's Changing Climate unit: Lesson 1.3, Activity 2, screen 2 of 4, Instructional Guide (steps 4–10) and simulation Lesson 4.1, Activity: Introducing Volcanic Eruptions, Climate Models video Geology on Mars unit: Lesson 2.1, Activity 3, "Investigating Landforms on Venus" article	of 57	

Publisher: **Amplify Education** Program Title: **Amplify Science** Earth's Changing Climate Engineering Connections to CC *Internship* unit: C Engineering, • Ch.1, Day 1 Technology, o Activity 1, Teacher Support tab and Applications of ("Instructional Suggestion, Nature Science of Science, Connecting to Engineering, Technology, and Applications of Science") Interdependence of o Activity: Introducing Futura, Science. Instructional Guide (step 3) Engineering, and o Activity 2, Instructional Guide Technology (steps 4–7), Teacher Support tab ("Rationale, Pedagogical Goals: Engineering Understanding the Nature of Science"), and Futura Civil advances have Engineer's Dossier," article led to important Unit Guide, Unit Overview discoveries in Ch.1, Day 2, Activity 3, "Meet an Engineer virtually every Who Designs City Streets" article field of science **Plate Motion Engineering Internship** unit: and scientific • Unit Guide, Unit Overview discoveries have • Ch.1, Day 1, Activity: Introducing led to the Futura, Instructional Guide (step 3) development of entire industries Plate Motion unit: • Lesson 3.1, Activity: Plate Motion and and engineered GPS, Plate Motion and GPS video systems. (MS-ESS1-3) Ocean, Atmosphere, and Climate unit: • Lesson 1.2, Activity: Chasing El Niño,

Science and Engineering Practices Disciplinary Core Ideas	Publisher Citations	Performance Expectation	Publisher Citations	
Crosscutting Concepts				

Chasing El Niño video

 Lesson 1.2, Activity: Introduction to Climatologist Role, Ice Scientist video

Earth's Changing Climate unit:

SEP

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the

Plate Motion unit:

- Unit Guide, Unit Overview
- Lesson 3.2, Activity 3, "A Continental Puzzle" article and Teacher Support tab
- Lesson 3.4
 - o Activity 3, Instructional Guide
 - Activity 4, Student View and Possible Responses tab
- Lesson 4.1
 - Activity 3, screens 1–3 of 3, Instructional Guide (steps 1–11) and Student View
 - Lesson Brief, Digital Resources, "Science Seminar Evidence Cards"

Rock Transformations unit:

- Lesson 3.4
 - Activity 2, Instructional Guide (steps 1–8) and Student View
 - Activity 3, Instructional Guide (steps 1–9) and Student View
 - Lesson Brief, Digital Resources, "Modeling Tool: How the Great Plains and Rocky Mountains Formed copymaster" and "Write and Share Routine Student 1–3"

MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year -old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history.

Examples of

Earth's major

events could

recent (such as

the last Ice Age

or the earliest

fossils of homo

sapiens) to very

old (such as the

range from

being very

[DCI]

Plate Motion unit:

 Lesson 3.2, Activity 5, Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Rock Strata and Geologic Time")

[DCI]

Plate Motion unit:

- Lesson 4.2, Activity 2, Instructional Guide (step 6) and On-the-Fly Assessment (hummingbird icon)
- Lesson 3.1, Activity 3, Instructional Guide (step 6) and On-the-Fly Assessment (hummingbird icon)

[CCC]

Plate Motion unit:

 Lesson 3.2, Activity 5, Student View, Possible Responses tab, Sorting Tool activity: Earth's History, "Steno and the Shark" article, and Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Rock Strata and Geologic Time")

[CCC]

Earth, Moon, and Sun unit:

 Lesson 1.3, Activity 3, Instructional Guide (steps 1–7,) Student View, and On-the-Fly Assessment (hummingbird icon)

[SEP]

Earth, Moon, and Sun unit:

- Lesson 2.4
 - Activity 3, Instructional Guide (steps 1–9), Student View, and On-the-Fly Assessment (hummingbird icon)
 - o Lesson Brief, Digital Resources, "Write and Share

DCI	past and will continue to do so in the future. (MS-ESS1-4) ESS1.C: The History of Planet Earth The geologic time scale interpreted from rock strata provides a way to organize Earth's history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale. (MS-ESS1-4) ***Supplemental DCI	Plate Motion unit: • Lesson 3.2 • Activity 5, screens 1–2, Student View, Possible Responses tab, Sorting Tool activity: Earth's History, and "Steno and the Shark" article • Activity 3, Student View and "A Continental Puzzle" article	formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the	Routine: #1, #2 and #3 copymaster" Plate Motion unit: Lesson 3.4 Activity 3, Instructional Guide Activity 4, Student View and Possible Responses tab		
CC	Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-ESS1-4)	Plate Motion unit ■ Lesson 3.2, Activity 5, screens 1–2, Student View, Possible Responses tab, Sorting Tool activity: Earth's History, and "Steno and the Shark" article ■ Lesson 3.1, Activity 2, screens 3 of 3, Instructional Guide and Teacher Support tab ("Background, Crosscutting Concept: Scale, Proportion, and Quantity") Earth, Moon, and Sun unit ■ Lesson 1.2, Activity 4, Student View and "The Solar System is Huge" article ■ Lesson 1.3 ■ Activity 1, Student View ■ Activity 2, Instructional Guide (steps 1–8)	specific periods or epochs and events within them.]	names of specific periods or epochs and events within	names of specific periods or epochs and events within	

Publisher: Program Title:	Amplify Education Amplify Science			
		o Activity 3, screens 1–2 of 2, Instructional Guide (steps 1–7) and Student View		
		 Earth's Changing Climate unit: Lesson 1.3, Activity 2, screens 1–2 of 4, Instructional Guide (steps 4–10) and simulation Lesson 4.1, Activity: Introducing Volcanic Eruptions, Climate Models video 		
		Geology on Mars unit: ■ Lesson 2.1, Activity 3, "Investigating Landforms on Venus" article		

MS-ESS2 Earth's Systems

Science	e and Engineering		Performance	Publisher Citations	
Discipl	Practices linary Core Ideas cutting Concepts	Publisher Citations	Expectation		
Us Mo bu ex pro de an to pro ph	eveloping and sing Models odeling in 6–8 wilds on K–5 experiences and ogresses to eveloping, using, and revising models describe, test, and edict more abstract menomena and esign systems. Develop and use a model to describe phenomena. (MS-ESS2-1)	 Earth's Changing Climate unit: Lesson 1.3, Activity 3, Instructional Guide (steps 5–9), Student View, and Teacher Support tab ("Background, Pedagogical Goals: Developing Models") Earth, Moon, and Sun unit: Lesson 3.1, Activity 2, screen 3 of 3, Instructional Guide (steps 6–11) and Student View Lesson 1.3, Activity 3, Instructional Guide and Student View Plate Motion unit: Lesson 2.3, Activity 3, Instructional Guide (steps 1–9) and Student View Ocean Atmosphere and Climate unit: Lesson 1.4, Activity 3, Instructional Guide, Student View, and Modeling Tool: 1.4 Different Temperatures 	MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering,	[DCI] Rock Transformations unit: Lesson 3.4 Activity 2, Instructional Guide (steps 1–8), Student View, and On-the-Fly Assessment (hummingbird icon) Lesson Brief, Digital Resources, "Write and Share Routine: Student 1–3 copymaster" Lesson 4.3: Activity 2, Instructional Guide (steps 1–13) Activity: Introducing the Homework Assignment, Instructional Guide (steps 1–5) Activity 3, Student View Lesson Brief, Digital Resources, "Rubrics for Final Written Arguments"	

Publisher: **Amplify Education Amplify Science**

Progra	m Title
CC	ESS Mate Syst
C	Cha

2.A: Earth's erials and tems

All Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. This energy is derived from the sun and Earth's hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth's materials and living organisms.

Rock Transformations unit:

- Chapter 2, Chapter Overview
- Lesson 2.1
 - o Activity 2, screens 2–3 of 4, Instructional Guide (steps 8–13)
 - Activity 3, Instructional Guide (steps 1–5), Student View, and Sorting Tool activity: Weathering and Melting
- Lesson 3.4
 - o Activity 2, Instructional Guide (steps 1-8) and Student View
 - **Lesson Brief, Digital Resources.** "Write and Share Routine: Student 1-3 copymaster"

Earth's Changing Climate unit:

• Lesson 2.2, Activity 2, Instructional Guide (steps 1–3, 6), Student View, and "Past Climate Changes on Earth" article

Ocean, Atmosphere, and Climate unit:

Lesson 3.1, Activity 3, Student View and "The Gulf Stream: A Current That Helped Win a War" article

Weather Patterns unit:

Lesson 1.2, Activity 3, Instructional Guide (steps 1-7), Student View, and simulation

- - o Activity 2, Instructional Guide (steps 2-7), Student View, and "Past Climate Changes on Earth" article
 - Activity 3, Instructional Guide Modeling Tool: Carbon Dioxide/Methane

deformation. and sedimentation. which act together to form minerals and rocks through the cycling of Earth's materials.1 [Assessment Boundary: Assessment does not include the identification and naming of minerals.]

[SEP]

Plate Motion unit:

- Lesson 2.4
 - o Activity 4, Instructional Guide (steps 1-5), Student View, and On-the-Fly Assessment (hummingbird icon)
 - Lesson Brief, Digital Resources, "Modeling Tool: Modeling Convergent and **Divergent Plate Boundaries** copymaster "

Earth's Changing Climate unit:

Lesson 1.3, Activity 3, Instructional Guide (steps 5-9), Student View, and Teacher Support tab ("Background, Pedagogical Goals: Developing Models")

[CCC1

Earth's Changing Climate unit:

Lesson 2.3, Activity 1, Instructional Guide (steps 1–2), Student View, and On-the-Fly Assessment (hummingbird icon)

Explanations of stability and change in natural or designed systems can be

(MS-ESS2-1)

Earth's Changing Climate unit:

- Lesson 2.3
 - (steps 1-7), Student View, and

Publisher: Program Title:		Amplify Education Amplify Science	
С		onstructed by	_

constructed by examining the changes over time and forces at different scales.
(MS-ESS2-1)

 Lesson 1.2, Activity 4, Instructional Guide (steps 1–6) and Student View

Rock Transformations unit:

 Lesson 3.1, Activity 2, Student View and "The Oldest Rock Formations on Earth" article

Weather Patterns unit:

 Lesson 2.4, Activity 3, Instructional Guide (steps 8–12) and Student View

Scie	nce and Engineering		Performance	Publisher Citations
	Practices ciplinary Core Ideas esscutting Concepts	Publisher Citations	Expectation	
SEP	Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Construct a scientific explanation based on valid	Plate Motion unit: ■ Unit Guide, Unit Overview ■ Lesson 3.2, Activity 3, "A Continental Puzzle" article and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") ■ Lesson 3.4 ■ Activity 3, Instructional Guide ■ Activity 4, Student View and Possible Responses tab ■ Lesson 4.1 ■ Activity 3, screens 1–3 of 3, Instructional Guide (steps 1–11) and Student View ■ Lesson Brief, Digital Resources, "Science Seminar Evidence Cards copymaster" Rock Transformations unit: ■ Lesson 3.4 ■ Activity 2, Instructional Guide (steps 1–8) and Student View ■ Lesson Brief, Digital Resources, Activity 3, Instructional Guide (steps 1–9) and Student View ■ Lesson Brief, Digital Resources, Write and Share Routine Student	MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such	[DCI, SEP] **Rock Transformations** unit: **Lesson 3.4* **O Activity 2, Instructional Guide (steps 1–8), Student View, and On-the-Fly Assessment (hummingbird icon) **O Lesson Brief, Digital Resources, "Write and Share Routine: Student 1–3 copymaster" **[DCI, SEP]** **Plate Motion** unit: **Lesson 4.2, Activity 2, Instructional Guide (steps 1–7), Student View, and On-the-Fly Assessment (hummingbird icon) **Lesson 4.1, Lesson Brief, Digital Resources, "Science Seminar Evidence Cards copymaster" **[CCC]** **Plate Motion** unit: **Lesson 3.2, Activity 5, Student View, Possible Responses tab, Sorting Tool

Publisher: **Amplify Education Amplify Science** Program Title:

and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future. (MS-ESS2-2)

1-3 copymaster" and "Modeling Tool: How the Great Plains and **Rocky Mountains Formed** copymaster"

- Lesson 1.3, Activity 2, Instructional Guide (steps 1-11), Student View, and simulation
- Lesson 2.1:
 - o Activity 2, Instructional Guide (steps 1-16), Student View, and simulation
 - Activity: Playing Understanding Weathering, Instructional Guide (steps 1–5), and Understanding Weathering video
- (steps 1–2, 7) and "Devils Tower" article
 - o Activity 3, Instructional Guide On-the-Fly Assessment (hummingbird icon)
 - Lesson Brief, Digital Resources. "Modeling Tool: How Rocks Form copymaster"

activity: Earth's History, "Steno and the as slow plate Shark" article and Teacher Support tab motions or the ("Assessment, Assessment uplift of large Opportunity: Student Understanding of mountain Rock Strata and Geologic Time") ranges) or small (such as rapid Earth, Moon, and Sun unit: landslides or

Lesson 1.3, Activity 3, Instructional Guide (steps 1–7), Student View, and On-the-Fly Assessment (hummingbird icon)

ESS2.A: Earth's DCI Materials and **Systems**

The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These

Rock Transformations unit:

- Lesson 2.2, Activity 2, Instructional Guide
- Lesson 2.4
 - (steps 1-8), Student View, and

Plate Motion unit:

microscopic

geochemical

how many

geoscience

reactions), and

processes (such

as earthquakes,

volcanoes, and

meteor impacts) usually behave

gradually but

are punctuated

by catastrophic

include surface

weathering and

the movements

Emphasis is on

processes that

features, where

deposition by

of water, ice,

and wind.

geoscience

shape local

geographic

appropriate.

Examples of

geoscience

processes

events.

interactions

have shaped Earth's history

Amplify Science Program Title: and will Lesson 3.1 o Activity: Video: Plate Motion and determine its **GPS**. Instructional Guide future. o Activity 2, Instructional Guide (MS-ESS2-2) Earth's Changing Climate unit: • Lesson 4.3 o Activity 2, Instructional Guide (steps 1–11) o Activity: Introducing the **Homework Assignment**, Instructional Guide (steps 1–4) Activity 3, Student View Lesson Brief, Digital Resources, "Rubrics for Assessing Students" Final Written Arguments" Lesson 1.2, Activity: Introduction to Climatologist Role, Ice Scientist video Ocean, Atmosphere, and Climate unit: • Lesson 4.3 o Activity 4, Instructional Guide (steps 1-4) and Student View Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Final Written Arguments" **ESS2.C: The Roles** Rock Transformations unit: DCI Lesson 2.1 of Water in Earth's o Activity 2, Instructional Guide **Surface Processes** (steps 1–16), Student View, and simulation Water's o Activity: Playing Understanding movements—bot Weathering, Instructional Guide (steps 1–7), Understanding h on the land and Weathering video, and Teacher underground—ca Support tab ("Background, Going use weathering Further: Water and Underground and erosion, Weathering") which change the Lesson 2.2, Activity 2, Instructional Guide (steps 1-2, 7) and "Devils Tower" article land's surface Lesson 2.4 features and o Activity 3, Instructional Guide create (steps 1-8), Student View, and underground On-the-Fly Assessment formations. (hummingbird icon)

Publisher:

Amplify Education

	(140 5000 5)	. Lanca Bulat Distrato
	(MS-ESS2-2)	 Lesson Brief, Digital Resources, "Modeling Tool: How Rocks Form
	4	copymaster"
CC	Scale Proportion	Plate Motion unit:
CC	and Quantity	• Lesson 3.2, Activity 5 , Student View,
С	and Quantity	Possible Responses tab, Sorting Tool
	Time, space,	activity: Earth's History, and "Steno and the
	and energy	Shark" article
	phenomena can	• Lesson 3.1, Activity 2, screen 3 of 3,
	be observed at	Instructional Guide (steps 6–16), Student View, and Teacher Support tab
	various scales	("Background, Crosscutting Concept:
		Scale, Proportion, and Quantity")
	using models to	
	study systems	Earth, Moon, and Sun unit:
	that are too	Lesson 1.2, Activity 4 , Student View and "The Seler System in Livre" article.
	large or too	"The Solar System is Huge" article Lesson 1.3
	small.	o Activity 1, Student View
	(MS-ESS2-2)	o Activity 2, Instructional Guide
		(steps 1–8)
		o Activity 3, screens 1–2 of 2,
		Instructional Guide (steps 1–7) and
		Student View
		Earth's Changing Climate unit:
		• Lesson 1.3, Activity 2 , screens 1–2 of 4,
		Instructional Guide (steps 4–10) and
	4	simulation
	4	Lesson 4.1, Activity: Introducing
	4	Volcanic Eruptions, Climate Models video
		Geology on Mars unit:
	4	Lesson 2.1, Activity 3, "Investigating
	4	Landforms on Venus" article

Dis	nce and Engineering Practices ciplinary Core Ideas esscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Analyzing and Interpreting Data	 Ocean, Atmosphere, and Climate unit: Lesson 1.3, Activity 3, Instructional Guide (steps 1–5), Student View, and simulation 	MS-ESS2-3.	[DCI, SEP] Plate Motion unit:

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

 Analyze and interpret data to provide evidence for phenomena. (MS-ESS2-3)

Connections to

- Lesson 2.2, **Activity 3**, Instructional Guide (steps 1–10), and Student View
- Lesson 4.1
 - Activity 3, Instructional Guide (steps 1–4) and Student View
 - Lesson Brief, Digital Resources,
 "Science Seminar Evidence Cards"
 - Activity 4, Instructional Guide (steps 1–4) and Student View

Plate Motion unit:

- Lesson 3.1, **Activity 2**, Instructional Guide (steps 1–16), Student View, and simulation
- Lesson 4.1
 - Activity 3, Instructional Guide (steps 1–11) and Student View
 - Lesson Brief, Digital Resources, "Science Seminar Evidence Cards"
 - Activity 4, Instructional Guide (steps 1–7) and Student View

Plate Motion unit:

• Lesson 3.2, **Activity 3**, "A Continental Puzzle" article

Ocean, Atmosphere, and Climate unit:

- Lesson 4.3, Activity 6, Student View
- Lesson 3.4
 - Activity 3, Instructional Guide (steps 1–8) and Student View
 - Lesson Brief, Digital Resources, "Evidence Cards copymaster"

Earth's Changing Climate unit:

 Lesson 3.1, Activity 4, Student View and "Global Warming: A History of a Hot Debate" article

Geology on Mars unit:

 Lesson 3.4, Activity: Rover on Mars Video, Instructional Guide (steps 1–4) and Rover on Mars video Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

[Clarification Statement:

Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges. fracture zones. and trenches).] [Assessment Boundary:

Paleomagnetic

- Lesson 4.3
 - Activity 3, Instructional Guide (steps 1–5), Student View, and On-the-Fly Assessment (hummingbird icon)
 - Activity 4, Instructional Guide (steps 1–6) and Student View
 - o Activity 6, Student View
 - Nesson Brief, Digital
 Resources, "Rubrics for Final
 Written Argument" and
 "Science Seminar Reasoning
 Tool copymaster"

[DCI, CCC]

Plate Motion unit:

- Lesson 3.3, Activity 3, Instructional Guide (steps 1–17), Student View, and On-the-Fly Assessment (hummingbird icon)
- Lesson 2.5, Activity 2, Instructional Guide (steps 1–10), Student View and On-the-Fly Assessment (hummingbird icon)

[SEP]

Plate Motion unit:

Lesson 3.1, **Activity 2**, Instructional Guide and simulation

Nature of Science

Scientific Knowledge is Open to Revision in Light of New Evidence

 Science findings are frequently revised and/or reinterpreted based on new evidence. (MS-ESS2-3)

		T	ī	T
DCI	ESS1.C: The History of Planet Earth Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3)	 Plate Motion unit: Chapter 2, Chapter Overview Lesson 2.2, Activity 2, Instructional Guide (steps 1–3, 8–9) and "Listening to Earth" article Lesson 2.3, Activity 3, Instructional Guide (steps 1–11) and Student View Lesson 2.4, Activity 3, Instructional Guide and simulation Plate Motion Engineering Internship unit: Ch.1, Day 3, Activity: Researching Plate Boundaries, Instructional Guide (steps 1–7), and Futura Geohazards Engineer's Dossier, "Plate Motion and Tsunamis" article 	anomalies in oceanic and continental crust are not assessed.]	
DCI	ESS2.B: Plate	Plate Motion unit:		
	Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth's plates have moved great distances, collided, and spread apart. (MS-ESS2-3)	 Lesson 3.3: Activity 2, Instructional Guide (steps 1–6), Student View, and "A Continental Puzzle" article Activity 3, Instructional Guide (steps 1–16) and Student View Lesson Brief, Digital Resources, "Gondwanaland Puzzle copymaster" Lesson 3.4: Activity 2, Instructional Guide (steps 1–10) and Student View Activity: Video: Indian Plate Motion unit: Instructional Guide (steps 1–3), and Indian Plate Motion video Lesson 3.1, Activity 2, Instructional Guide (steps 1–16), Student View, and simulation Ocean, Atmosphere, and Climate unit: Lesson 4.1, Activity 2, Instructional Guide (steps 1–4) 		

	*** Cumplemental	Rock Transformations unit:	
	***Supplemental	Lesson 3.1, Activity 2, Student View and	
	DCI LS4.A	"The Oldest Rock Formations on Earth"	
		article	
СС	B 44	Plate Motion unit:	
	Patterns		
C	Patterns Patterns in rates of change and other numerical relationships can provide information about natural and human designed systems. (MS-ESS2-3)	l	
		Tests, Instructional Guide (steps	
		1–7)	
		 Lesson Brief, Digital Resources, 	
		"RoofMod Data copymaster"	
		Earth's Changing Climate unit:	
		Lesson 1.2, Activity: Introduction to	
		Climatologist Role, Ice Scientist video	

MS-ESS2 Earth's Systems

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
---	---------------------	----------------------------	---------------------

SEP

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

 Develop a model to describe unobservable mechanisms. (MS-ESS2-4)

DCI ESS2.C: The Roles of Water in Earth's Surface Processes

Water
 continually
 cycles among
 land, ocean,
 and
 atmosphere
 via
 transpiration,
 evaporation,
 condensation

Earth's Changing Climate:

- Lesson 1.3, Activity 3, Instructional Guide (steps 5–9) and Student View
- Lesson 2.7, Activity 2, Instructional Guide (steps 1–8), Student View, and Modeling Tool: Energy Path Open Use

Plate Motion unit:

• Lesson 2.3, **Activity 3**, Instructional Guide (steps 1–11) and Student View

Rock Transformations unit:

- Lesson 2.4
 - Activity 3, Instructional Guide (steps 1–8), Student View, and Possible Responses tab
 - Lesson Brief, Digital Resources, "Modeling Tool: How Rocks Form copymaster"
- Lesson 3.4
 - Activity 3, screen 2 of 2, Instructional Guide (steps 4–11), Student View and Possible Responses tab
 - Lesson Brief, Digital Resources, "Modeling Tool: How the Great Plains and Rocky Mountains Formed copymaster"

Weather Patterns unit:

- Lesson 1.2, Activity 1, Instructional Guide (steps 1–5) and Student View
- Lesson 1.3
 - o Activity 1, Student View
 - Activity 2, Instructional Guide and Student View
 - **o Activity 3**, Instructional Guide, Student View, and simulation
 - Activity 4, Instructional Guide (steps 1–10) and Student View
 - o Activity 5, Student View and "What Makes Water Move?" article
- Lesson 1.4, Activity 2, "What Are Clouds?" article
- Lesson 1.5, **Activity 3**, Instructional Guide (steps 1–8), Student View and simulation

MS-ESS2-4.

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water

Statement:
Emphasis is on
the ways water
changes its state
as it moves
through the
multiple
pathways of the
hydrologic cycle.
Examples of
models can be
conceptual or
physical.]
[Assessment
Boundary: A
quantitative

understanding of

the latent heats

of vaporization

assessed.1

and fusion is not

[DCI, CCC]

Weather Patterns unit:

 Lesson 2.3, Activity 3, Instructional Guide (steps 1–12), Student View, simulation, and On-the-Fly Assessment (hummingbird icon)

[SEP]

Plate Motion unit:

- Lesson 2.4
 - o Activity 4,
 Instructional Guide
 (steps 1–5),
 Student View, and
 On-the-Fly
 Assessment
 (hummingbird
 icon)
 - D Lesson Brief,
 Digital Resources,
 "Modeling Tool:
 Modeling
 Convergent and
 Divergent Plate
 Boundaries
 copymaster"

Earth's Changing Climate unit:

 Lesson 1.3, Activity 3, Instructional Guide (steps 5–9) and Student View

[CCC]

Weather Patterns unit:

 Lesson 2.1, Activity 3, Instructional Guide (steps 1–9,) Student View, and Teacher Support tab

[DCI]

Weather Patterns unit:

Amplify Science Program Title: Lesson 4.1, Activity 4, Student View and Lesson 1.2, Activity 1, and "Hail. Snow, and Sleet" article Instructional Guide (steps crystallization, 1-5) and Student View and Rock Transformations unit: precipitation, Lesson 2.1 as well as o Activity: Playing Understanding downhill flows Weathering, Instructional Guide (steps 1–5) and Understanding on land. Weathering video (MS-ESS2-4) o Activity 2, Instructional Guide (steps ***Supplemental 1–16), Student View, and simulation DCI PS1.A o Activity 3, Instructional Guide (steps 1–5), Student View, and Sorting Tool: Global Weathering and Melting movements of water and its changes in form are propelled by sunlight and gravity. (MS-ESS2-4) **Energy and Matter** Weather Patterns unit: CC • Lesson 2.1, Activity 3, Instructional Guide C Within a (steps 1-9), Student View, and Teacher Support tab ("Instructional Suggestion, natural or Crosscutting Concepts: Making Connections designed Across Science Topics") system, the transfer of Ocean, Atmosphere, and Climate unit: • Lesson 3.2, **Activity 4**, "What Causes energy drives Prevailing Winds?" article the motion • Lesson 3.3, Activity 4, "Deep Ocean and/or cycling Currents: Driven by Density" article of matter. (MS-ESS2-4) Rock Transformations unit: • Lesson 2.1, **Activity 2**, Instructional Guide (steps 8-14), Student View, and simulation Lesson 2.4 o Activity 2, Instructional Guide (steps 1-9) and Student View

Publisher:

Amplify Education

	 Lesson Brief, Digital Resources, "Write and Share Routine: Student 1–4 copymaster" 		
Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
Planning and Carrying Out Investigations Planning and carrying out investigations in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions. Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions. (MS-ESS2-5)	Ocean, Atmosphere, and Climate unit: Lesson 2.3 Activity 2, Instructional Guide (steps 1–8) and Student View Activity 3, Instructional Guide (steps 1–7), Student View, and simulation Activity 4, Instructional Guide (steps 1–5) and Student View Earth's Changing Climate unit: Lesson 1.4: Activity 2, Instructional Guide (steps 1–3) Activity 3, Instructional Guide (steps 1–10), Student View, and simulation Weather Patterns unit: Lesson 2.3, Activity 3, Instructional Guide (steps 1–11), Student View, and simulation Earth's Changing Climate Engineering Internship unit: Ch.1, Day 4 Activity: Performing Iterative Tests, Instructional Guide (steps 1–6) and RoofMod Design Tool Lesson Brief, Digital Resources, "RoofMod Data copymaster"	MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how	[DCI, SEP] Weather Patterns unit: Lesson 2.3, Activity 3, Instructional Guide (steps 1–12), Student View, simulation, and On-the-Fly Assessment (hummingbird icon) [DCI, CCC] Ocean, Atmosphere, and Climate unit: Lesson 3.3, Activity 2, Instructional Guide (steps 1–7), Student View, Modeling Tool: 3.3 Christchurch Model and On-the-Fly Assessment (hummingbird icon) Lesson 4.3 Activity 4, Instructional Guide (steps 1–7) and Student View Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Final Written Arguments" Activity 6, Student View [SEP]

ESS2.C: The Weather Patterns unit: sudden changes Ocean, Atmosphere, and Climate DCI Lesson 3.1 unit: Roles of Water in in weather can o Activity: Modeling Wind and Air Lesson 2.3: Earth's Surface result when Parcels, Instructional Guide (steps o Activity 2, **Processes** different air Instructional Guide 1-6) masses collide. Activity 3, Instructional Guide (steps (steps 1-8) and The complex 1–12), Student View, and simulation Student View Emphasis is on patterns of **Activity 4**, Student View and "Types Activity 3, how weather can of Rain" article Instructional Guide the changes be predicted (steps 1-7),and the within Ocean, Atmosphere, and Climate unit: Student View, and movement of probabilistic Lesson 1.2 simulation water in the o Activity: Chasing El Niño, Chasing Activity 4. ranges. Instructional Guide atmosphere. El Niño video Examples of data Activity 4, "Effects of El Niño Around (steps 1-5) and determined by can be provided the World" article Student View winds. to students (such • Lesson 2.1, **Activity 2**, "The Ocean in landforms. as weather [DCI] Motion" article and ocean Lesson 2.3 Weather Patterns unit: maps, diagrams, o Activity 2, Instructional Guide (steps temperatures Lesson 3.2, Activity 4, and 1-8) and Student View Student View. "How We and currents. visualizations) or o Activity 3, Instructional Guide (steps Predict the Weather" article are major obtained through 1-7), Student View, and simulation and Possible Responses determinants o Activity 4. Instructional Guide (steps laboratory tab of local 1-5) and Student View experiments weather Lesson 3.2 (such as with o Activity: Gulf Stream Video, patterns. condensation).1 Instructional Guide (steps 1-3) and (MS-ESS2-5) [Assessment Gulf Stream video Boundary: o Activity 2, Instructional Guide (steps 1-6.) Student View and "The Gulf Assessment Stream: A Current That Helped Win does not include a War" article recalling the Activity 3. Instructional Guide names of cloud ESS2.D: Weather Weather Patterns unit: DCI types or weather • Lesson 3.2, **Activity 4,** Student View, "How and Climate symbols used on We Predict the Weather" article, and Because Possible Responses tab weather maps or the reported these patterns diagrams from are so weather complex. stations. weather can only be

	11. ()		
	predicted		
	probabilisticall		
	у.		
	(MS-ESS2-5)		
CCC	Cause and Effect	Rock Transformations unit:	
	Cause and	 Lesson 3.2, Activity 3, Instructional Guide 	
	effect	(steps 1–8), Student View, and simulation	
	relationships	Earth's Changing Climate Engineering Internship	
	may be used	unit:	
	to predict	• Ch.1, Day 2	
	phenomena in	 Activity 2, Instructional Guide and Futura Civil Engineer's Dossier, 	
	natural or	"Roof Modification Technical Notes"	
	designed	article	
	systems.	 Lesson Brief, Digital Resources, 	
	(MS-ESS2-5)	"Roof Modification Details	
	,	copymaster"	
		Weather Patterns unit:	
		 Lesson 3.2, Activity 4, Student View and "How We Predict the Weather" article 	
		Lesson 2.1, Activity 3, Instructional Guide	
		(step 3)	
		(5.5)	
		Earth's Changing Climate unit:	
		 Lesson 1.2, Activity: Introduction to 	
		Climatologist Role, Ice Scientist video	

Disc	nce and Engineering Practices ciplinary Core Ideas sscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using,	 Earth's Changing Climate unit: Lesson 1.3, Activity 3, Instructional Guide (steps 5–9), Student View, and Teacher Support tab ("Background, Pedagogical Goals: Developing Models") Earth, Moon, and Sun: 	MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the	[PE] Ocean, Atmosphere, and Climate unit: Lesson 3.2, Activity 4, Student View, "What Causes Prevailing Winds?" article, and "The Coriolis Effect" article [DCI, SEP]

	and revising models to describe, test, and predict more abstract phenomena and design systems. Develop and use a model to describe phenomena. (MS-ESS2-6)	 Lesson 3.1, Activity 2, screen 3 of 3, Instructional Guide (steps 6–11) and Student View Lesson 1.3, Activity 3, Instructional Guide and Student View Plate Motion unit: Lesson 2.3, Activity 3, Instructional Guide (steps 1–9) and Student View Ocean Atmosphere and Climate unit: Lesson 1.4, Activity 3, Instructional Guide, Student View, and Modeling Tool: 1.4 Different Temperatures 	Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns	Ocean, Atmosphere, and Climate unit: Lesson 3.3, Activity 2, Instructional Guide (steps 1–7), Student View, Modeling Tool: 3.3 Christchurch Model, and On-the-Fly Assessment (hummingbird icon) Lesson 1.4, Activity 3, Instructional Guide (steps 1–6), Student View, Modeling Tool: 1.4 Different Temperatures, and On-the-Fly Assessment (hummingbird icon) [DCI] Ocean Atmosphere and Climate:
DCI	ESS2.C: The Roles of Water in Earth's Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. (MS-ESS2-6) ***Supplemental DCI PS3.B, PS4.B	Ocean, Atmosphere, and Climate: Lesson 3.3, Activity 4, Student View and "Deep Ocean Currents: Driven by Density" article Lesson 3.2 Activity 4, Student View and "What Causes Prevailing Winds?" article Activity: Gulf Stream Video, Instructional Guide (steps 1–3) and Gulf Stream video Activity 2, Instructional Guide (steps 1–6), Student View, and "The Gulf Stream: A Current That Helped Win a War" article Activity 3, Instructional Guide (steps 1–15) and Student View	Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on	Ocean, Atmosphere, and Climate: Lesson 4.3 Activity 4, Instructional Guide (steps 1–7) and Student View Lesson Brief, Digital Resources, "Rubrics for Assessing Students' Final Written Arguments" Activity 6, Student View CCC Geology on Mars unit: Lesson 3.5 Activity 1, Student View Lesson Brief, Digital Resources, "End-of-Unit Assessment Scoring Guide" Earth's Changing Climate unit: Lesson 2.3, Activity 3, Instructional Guide (steps 1–6), Student View, and Modeling Tool: Carbon
DCI	ESS2.D: Weather and Climate • Weather and climate are influenced by interactions	Ocean, Atmosphere, and Climate unit: • Lesson 1.4 • Activity 1, Student View, and Sorting Tool: 1.4 Warm–Up • Activity 2, Instructional Guide (steps 1–14) and Student View	the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis	Dioxide/Methane

involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. (MS-ESS2-6)

The ocean
exerts a major
influence on
weather and
climate by
absorbing
energy from
the sun,
releasing it
over time, and
globally
redistributing it
through ocean
currents.
(MS-ESS2-6)

- Activity 3, Instructional Guide (steps 1–6), Student View, and Modeling Tool: 1.4 Different Temperatures
- Activity 4, Student View and simulation
- Lesson 2.3
 - Activity 2, Instructional Guide (steps 1–8) and Student View
 - Activity 3, Instructional Guide (steps 1–7), Student View, and simulation
 - Activity 4, Instructional Guide (steps 1–5) and Student View
- Lesson 3.2
 - Activity: Gulf Stream Video, Instructional Guide (steps 1–3) and Gulf Stream video
 - Activity 2, Instructional Guide (steps 1–6), Student View, and "The Gulf Stream: A Current That Helped Win a War" article
 - Activity 3, Instructional Guide (steps 1–15) and Student View
- Lesson 4.1
 - Activity 2, Instructional Guide (steps 1–8) and Student View
 - Activity 3, Instructional Guide (steps 1–4) and Student View
 - Lesson Brief, Digital Resources,
 "Science Seminar Evidence Cards A-E"
 - Activity 4, Instructional Guide (steps 1–3) and Student View
- Chapter 2, Chapter Overview
- Lesson 2.4
 - o Activity 1, Student View
 - Activity 2, Instructional Guide (steps 1–5) and Student View
 - Activity 3, Instructional Guide (steps 1–7), Student View, and Modeling Tool: 2.4 Currents and Temperature
 - Activity 4, Instructional Guide (steps 1–6) and Student View
 - Activity 5, Student View and "How the Ocean Keeps Climates Stable" article

effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

Weather Patterns unit: Lesson 2.3 O Activity 2, Instructional Guide (steps 1-8), Student View and "Disaster in Californial" article O Activity 3, Instructional Guide (steps 1-11), Student View, and simulation Earth's Changing Climate unit: Lesson 1.2, Activity 5, "The Effects of Climate Change" article (Warming and Extreme Weather" chapter) Lesson 4.2 O Activity 2, Instructional Guide (steps 6-11) and Student View Lesson 1.2, Activity 2, Instructional Guide (steps 6-11) and Student View U Lesson Brief, Digital Resources, "Volcano Evidence Cards G-J" Earth's Changing Climate unit: Lesson 1.2, Activity 3, Instructional Guide (steps 6-1) and Student View Lesson 2.3, Activity 3, Instructional Guide (steps 1-6), Student View, and Modeling Tool: Carbon Dioxide/Methane Lesson 2.7, Activity 2, Instructional Guide (steps 1-6), Student View, and Modeling Tool: Energy Path Open Use Lesson 4.1, Activity: Introducing Volcanic Eruptions, Climate Models video Ocean, Atmosphere, and Climate unit: Lesson 2.4, Activity 3, Instructional Guide (steps 1-7), Student View, and Modeling Tool: 2.4 Currents and Temperature Geology on Mars unit: Geology on Mars unit: Californial Tricle Carbon 2.3 Activity 3, Instructional Guide (steps 1-7), Student View, and Modeling Tool: 2.4 Currents and Temperature Geology on Mars unit: Lesson 2.4, Activity 3, Instructional Guide (steps 1-7), Student View, and Modeling Tool: 2.4 Currents and Temperature	Publis Progra	ner: Amplify Education In Title: Amplify Science		
CC System and System Models - Models can be used to represent systems and their interactions—s uch as inputs, processes and outputs—and energy, matter, and Climate unit: - Easth's Changing Climate unit: - Lesson 2.3, Activity 3, Instructional Guide (steps 1–6), Student View, and Modeling Tool: Carbon Dioxide/Methane - Lesson 2.7, Activity 2, Instructional Guide (steps 1–8), Student View, and Modeling Tool: Energy Path Open Use - Lesson 4.1, Activity: Introducing Volcanic Eruptions, Climate Models video - Cocean, Atmosphere, and Climate unit: - Lesson 2.4, Activity 3, Instructional Guide (steps 1–7), Student View, and Modeling Tool: 2.4 Currents and Temperature - Cocean, Atmosphere, and Climate unit: - Cocean, Atmosphere, and Climate unit:			 Lesson 2.3 Activity 2, Instructional Guide (steps 1–8), Student View and "Disaster in California!" article Activity 3, Instructional Guide (steps 1–11), Student View, and simulation Lesson 1.2, Activity 5, "The Effects of Climate Change" article (Warming and Extreme Weather" chapter) Lesson 4.2 Activity 2, Instructional Guide (steps 6–11) and Student View Lesson Brief, Digital Resources, "Volcano Evidence Cards D–F" and 	
information flows within systems. (MS-ESS2-6) • Lesson 2.1, Activity 3, Investigating Landforms on Venus" article Plate Motion Engineering Internship unit: • Ch.1, Day 1, Activity: Exploring TsunamiAlert, Instructional Guide (steps		■ Models can be used to represent systems and their interactions—s uch as inputs, processes and outputs—and energy, matter, and information flows within systems.	 Earth's Changing Climate unit: Lesson 2.3, Activity 3, Instructional Guide (steps 1–6), Student View, and Modeling Tool: Carbon Dioxide/Methane Lesson 2.7, Activity 2, Instructional Guide (steps 1–8), Student View, and Modeling Tool: Energy Path Open Use Lesson 4.1, Activity: Introducing Volcanic Eruptions, Climate Models video Ocean, Atmosphere, and Climate unit: Lesson 2.4, Activity 3, Instructional Guide (steps 1–7), Student View, and Modeling Tool: 2.4 Currents and Temperature Geology on Mars unit: Lesson 2.1, Activity 3, "Investigating Landforms on Venus" article Plate Motion Engineering Internship unit: Ch.1, Day 1, Activity: Exploring 	

Science and Engineering		Performance	Publisher Citations
Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Expectation	
SEP Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the	Plate Motion unit: • Unit Guide, Unit Overview • Lesson 3.2, Activity 3, "A Continental Puzzle" article and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") • Lesson 3.4 • Activity 3, Instructional Guide (step 7) • Activity 4, Student View and Possible Responses tab • Lesson 4.1 • Activity 3, screens 1–3 of 3, Instructional Guide (steps 1–11) and Student View • Lesson Brief, Digital Resources, "Science Seminar Evidence Cards copymaster" Rock Transformations unit: • Lesson 3.4 • Activity 2, Instructional Guide (steps 1–8) and Student View • Activity 3, Instructional Guide (steps 1–9) and Student View • Lesson Brief, Digital Resources, "Write and Share Routine Student 1–3 copymaster" and "Modeling Tool: How the Great Plains and Rocky Mountains Formed copymaster"	MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a	IDCI Rock Transformations unit: Lesson 2.3, Activity 4, Teacher Support tab ("Assessment, Assessment Opportunity: Student Understanding of Renewable and Nonrenewable Resources ") ISEP Rock Transformations unit: Lesson 2.4 O Activity 2, Instructional Guide (steps 1–9), Student View, and On-the-Fly Assessment (hummingbird icon) O Lesson Brief, Digital Resources, "Write and Share Routine Student 1–4 copymaster" Plate Motion unit: Lesson 3.2, Activity 3, "A Continental Puzzle" article and Teacher Support tab ("Rationale, Pedagogical Goals: Understanding the Nature of Science") ICCC Ocean, Atmosphere, and Climate unit: Lesson 2.4, Activity 3, Instructional Guide (steps 1–9), Student View, Modeling Tool: 2.4 Currents and Temperature, and On-the-Fly Assessment

Amplify Science Program Title: result of [CCC] assumption Rock Transformations unit: that theories removal by Lesson 3.2, **Activity 3**, Instructional and laws that humans. Guide (steps 1-8), Student View, and describe the Examples of simulation natural world uneven distributions of operate today as they did in resources as a the past and result of past will continue to processes do so in the include but are not limited to future. (MS-ESS3-1) petroleum (locations of the Rock Transformations unit: DCI ESS3.A: Natural Lesson 2.3, Activity 4, Student View and burial of organic Resources "Why Can't I Find Gold in My Backyard?" marine article Humans sediments and subsequent Earth's Changing Climate unit: depend on • Lesson 1.4, **Activity 5**, "A Hole in Earth's geologic traps), Earth's land. Ozone Layer" article metal ores ocean, • Lesson 1.2, **Activity 5**, Student View and (locations of atmosphere, "The Effects of Climate Change" article past volcanic and biosphere and for many hydrothermal different activity resources. associated with Minerals, fresh subduction water, and zones), and soil biosphere (locations of resources are active limited, and weathering many are not and/or renewable or deposition of replaceable rock).] over human lifetimes. These resources are distributed

Publisher:

Amplify Education

Amplify Science Program Title: unevenly around the planet as a result of past geologic processes. (MS-ESS3-1) **Cause and Effect** CC Rock Transformations unit: • Lesson 3.2, **Activity 3**, Instructional Guide C Cause and (steps 1–8), Student View, and simulation effect Earth's Changing Climate Engineering Internship relationships unit: may be used • Ch.1, Day 2 to predict o Activity 2, Instructional Guide (steps phenomena in Lesson Brief, Digital Resources, natural or "Roof Modification Details designed copymaster" systems. (MS-ESS3-1) Weather Patterns unit: • Lesson 3.2, **Activity 4**, Student View. and "How We Predict the Weather" article • Lesson 2.1, **Activity 3**, Instructional Guide (step 3) Earth's Changing Climate unit: • Lesson 1.2, Activity: Introduction to Climatologist Role, Ice Scientist video Connections to Earth's Changing Climate unit: CC • Lesson 1.2, **Activity 5**, Student View and Engineering, C "The Effects of Climate Change" article Technology, Lesson 3.3 and Applications of o Activity 2, Instructional Guide (steps Science 2-8,) Student View, and "Climate Change Solutions" article o Activity 3, Instructional Guide (steps Influence of 1–7), Student View, and Modeling Science. Tool: Climate Change Solution Engineering, and Technology on Earth's Changing Climate Engineering Internship Society and the unit:

Publisher:

Amplify Education

Natural World All human activity draws on natural resources and has both short and long-term consequences , positive as well as negative, for the health of people and the natural environment. (MS-ESS3-1)	 Ch.1, Day 1, Activity 1, Teacher Support tab ("Instructional Suggestion, Nature of Science, Connecting to Engineering, Technology, and Applications of Science") Ch.1, Day 2 Activity 2, Instructional Guide (steps 1–7) Lesson Brief, Digital Resources, "Roof Modification Details copymaster" 		
--	---	--	--

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts		Publisher Citations	Performance Expectation	Publisher Citations
SEP	Analyzing and Interpreting Data Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.	 Weather Patterns unit: Lesson 3.2 Activity 3, Instructional Guide (steps 1–8) and Student View Lesson Brief, Digital Resources, "Storm Evidence Cards A–G copymaster" Geology on Mars unit: Lesson 1.1, Activity 3, screen 2 of 2, Instructional Guide (steps 6–16) and Student View Printable Resources, "Print Materials (8.5" x 11"), Comparing Rocky Planets Cards, pages 15–19 Earth's Changing Climate unit: 	MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. [Clarification	[DCI] Plate Motion Engineering Internship unit: • Ch.1, Day 9 • Activity: Finalizing the Proposal, Possible Responses tab • Lesson Brief, Digital Resources, "Printable Proposal Rubric" [CCC, DCI] Plate Motion unit: • Lesson 1.3, Activity 3, Instructional Guide (steps 1–24), Student View, and On-the-Fly Assessment (hummingbird icon)

- Analyze and interpret data to determine similarities and differences in findings. (MS-ESS3-2)
- Lesson 1.5, Activity 2, screens 1–6 of 7, Instructional Guide (steps 1–16) and Student View

Ocean, Atmosphere, and Climate unit:

- Lesson 4.1
 - Activity 2, Instructional Guide (steps 1–8) and Student View
 - Activity 3, Instructional Guide (steps 1–4) and Student View
 - Lesson Brief, Digital Resources,
 "Science Seminar Evidence Cards A-E"
 - Activity 4, Instructional Guide (steps 1–3) and Student View

Plate Motion Engineering Internship unit:

- Ch.1, Day 5
 - Activity: Testing Warning System
 Designs, Instructional Guide (steps 1–3) and TsunamiAlert Design Tool
 - Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster"
 - Activity: Analyzing Designs, Instructional Guide (steps 1–5)

ESS3.B: Natural Hazards

DCI

 Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations

Plate Motion Engineering Internship unit:

- Ch.1, Day 3
 - o Activity: Researching Plate
 Boundaries, Instructional Guide and
 Futura Geohazards Engineer's
 Dossier, "Tsunamis: Rare But
 Dangerous" article and "Plate Motion
 and Tsunamis" article
 - Activity: Investigating Earthquakes with TsunamiAlert, Instructional Guide (steps 1–6) and TsunamiAlert Design Tool
 - Lesson 2, Activity 2, Instructional Guide and Futura Geohazards Engineer's Dossier, "Plate Motion and Tsunamis" article
- Ch.1, Day 1, Activity 2, Instructional Guide (steps 4–6) and Futura Geohazards

Statement: Emphasis is on how some natural hazards. such as volcanic eruptions and severe weather. are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes. occur suddenly and with no notice, and thus are not vet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or

severe weather

events (such as

tornadoes, and

hurricanes.

Examples of

floods).

• **Printable Resources**, Print Materials (8.5" x 11"), Earthquake Map and Plate Boundary Map, pages 24–27

[SEP]

Plate Motion unit:

- Lesson 4.3
 - Activity 3, Instructional Guide (steps 1–5), Student View, and On-the-Fly Assessment (hummingbird icon)
 - Lesson Brief, Digital Resources, "Science Seminar Reasoning Tool copymaster"

Ocean, Atmosphere, and Climate unit:

 Lesson 2.3, Activity 3, Instructional Guide (steps 1–7), Student View, simulation, and On-the-Fly Assessment (hummingbird icon)

Engineer's Dossier, "Tsunamis: Rare But and likelihoods data can include Dangerous" article of future the locations, • Ch.1, Day 5, Activity: Testing Warning magnitudes, events. System Designs, Instructional Guide (steps (MS-ESS3-2) and frequencies 1-3) and TsunamiAlert Design Tool of the natural **Plate Motion** unit: hazards. • Lesson 1.3, Activity 3, Instructional Guide Examples of (steps 1-24) and Student View technologies • Lesson 1.4, Activity 2, Instructional Guide can be global (steps 1-9) and simulation (such as **Plate Motion** unit: CC **Patterns** • Lesson 1.3, Activity 3, Instructional Guide satellite systems C (steps 1-24) and Student View Graphs, to monitor • Printable Resources, "Print Materials (8.5" hurricanes or charts, and x 11"), Earthquake Map and Plate Boundary forest fires) or images can be Map, pages 24-27 local (such as used to Plate Motion Engineering Internship unit: building identify • Ch.1, Day 3 basements in patterns in o Activity: Researching Plate tornado-prone data. Boundaries, Instructional Guide regions or (MS-ESS3-2) (steps 1-7) and Futura Geohazards reservoirs to Engineer's Dossier, "Plate Motion and Tsunamis" article mitigate o Activity: Investigating droughts).] Earthquakes with TsunamiAlert, Instructional Guide (steps 1–6) and TsunamiAlert Design Tool Earth's Changing Climate unit: • Printable Resources, "Print Materials (8.5" x 11"), Melting Ice Evidence Cards A-C, pages 34-35 • Lesson 1.2 o Activity: Introduction to Climatologist Role, Ice Scientist o Activity 3, Instructional Guide (steps 1-9) and Student View o Activity 4, Instructional Guide (steps 1-6) and Student View Geology on Mars unit:

Publisher:

Program Title:

Amplify Education Amplify Science

		 Lesson 1.1, Activity: Introducing the Student Planetary Geologist Role, Meet a Planetary Geologist video 	
CC	Connections to Engineering, Technology, and Applications of Science	Engineering Skills, Instructional Guide	
	Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural Resources,	Earth's Changing Climate Engineering Internship unit: Ch.1, Day 1, Activity 1, Teacher Support tab ("Instructional Suggestion, Nature of Science, Connecting to Engineering, Technology, and Applications of Science") Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–5) and Introducing Futura video Ch.1, Day 10, Activity: Defining an Engineering Problem, Instructional Guide (steps 1–12)	
	"and economic conditions. Thus		
	technology		96 of 57

Publish Prograr	er: Amplify Education Title: Amplify Science		
	use varies from region to region and		
	over time. (MS-ESS3-2)		

MS-ESS3 Earth and Human Activity

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Apply scientific principles to design an	 Earth's Changing Climate Engineering Internship unit: Unit Guide, Unit Overview Ch.1, Day 1, Activity: Exploring Albedo, Instructional Guide (steps 1–17) Ch.1, Day 2, Activity 2, Instructional Guide and Futura Civil Engineer's Dossier, "Roof Modification Technical Notes" article Ch.1, Day 4	MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of	[DCI, SEP] Earth's Changing Climate Engineering Internship unit: • Ch.1, Day 9 • Activity: Writing the Conclusion, Possible Responses tab • Lesson Brief, Digital Resources, "Printable Proposal Rubric" Earth's Changing Climate unit: • Lesson 3.3, Activity 2, Instructional Guide (steps 1–8), Student View, "Climate Change Solutions" article, and On-the-Fly Assessment (hummingbird icon) [DCI] Earth's Changing Climate unit: • Lesson 1.2, Activity 5, Student View and "The Effects of Climate Change" article [CCC]

DCI	object, tool, process or system. (MS-ESS3-3) ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species.	 Earth's Changing Climate unit: Lesson 1.2, Activity 5, Student View and "The Effects of Climate Change" article Lesson 1.3, Activity 2, screen 1 of 4, Instructional Guide (step 2) Lesson 3.1 Activity 2, Instructional Guide (steps 1–10), Student View, and simulation Activity: Video About Combustion, Instructional Guide (steps 1–3) and Combustion video Activity 3, Instructional Guide (steps 1–19) and Student View Activity 4, Student View and Modeling Tool: Climate Change Cause Printable Resources, "Print Materials (8.5" x 11"), Human Activities Evidence Cards, page 36–37 	solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban	Ocean, Atmosphere, and Climate unit: Lesson 2.4, Activity 3, Instructional Guide (steps 1–9), Student View, Modeling Tool: 2.4 Currents and Temperature, and On-the-Fly Assessment (hummingbird icon) Earth's Changing Climate unit: Lesson 2.1, Activity 2, Instructional Guide (steps 1–2)
	But changes to Earth's environments can have different impacts (negative and positive) for different living things. (MS-ESS3-3)	development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]		
CC	Cause and Effect Relationships	 Lesson 2.1, Activity 2, Instructional Guide (steps 1–2) 		
	can be classified as			

Amplify Science Program Title: causal or correlational. and correlation does not necessarily imply causation. (MS-ESS3-3) Earth's Changing Climate unit: Connections to CC • Lesson 3.1, Activity 4, screen 2 of 2, Engineering, C "Global Warming: A History of a Hot Technology, Debate" article and Teacher Support tab and Applications of ("Rationale, Pedagogical Goals: Science Understanding the Nature of Science") Earth's Changing Climate Engineering Influence of *Internship* unit: Science, • Ch.1, Day 1, Engineering, and o Activity 1, Teacher Support tab Technology on ("Instructional Suggestion, Nature of Science, Connecting to Society and the Engineering, Technology, and **Natural World** Applications of Science") o Activity: Introducing Futura, The uses of Instructional Guide (steps 2–5) and technologies Introducing Futura video and any • Ch.1, Day 10, Activity: Defining an Engineering Problem, Instructional Guide limitations on (steps 1-12) their use are driven by Plate Motion Engineering Internship unit: individual or • Ch.1, Day 5 societal needs, o Lesson Brief, Lesson Overview o Activity: Testing Warning System desires, and Designs, Teacher Support tab values; by the ("Rationale, Pedagogical Goals: findings of Understanding the Nature of scientific Science") research; and • Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2-6) and by differences Introducing Futura video in such factors as climate,

Publisher:

natural Resources, "and economic conditions. Thus technology use varies from region to region and over time. (MS-ESS3-3)	Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–10)		
--	---	--	--

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s). Construct, use, and/or	Earth, Moon, and Sun unit: ■ Lesson 4.1 □ Activity 2, Instructional Guide (steps 1–2) and Student View □ Activity 3, Instructional Guide (steps 1–5) and Student View □ Lesson Brief, Digital Resources, "Science Seminar Evidence Cards copymaster" □ Activity 4, Instructional Guide (steps 1–7) and Student View □ Activity 5, Student View □ Activity 1, Student View □ Activity 2, Instructional Guide (steps 1–5) and Student View □ Activity: Introducing the Science Seminar, Instructional Guide (steps 1–4) □ Activity 3, Instructional Guide (steps 1–4) □ Activity 4, Student View □ Activity 4, Student View □ Lesson 4.3 □ Activity 2, Instructional Guide (steps 1–11) and Student View	MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. [Clarification Statement: Examples of evidence	[DCI] Earth's Changing Climate: • Lesson 3.1 • Activity 3, Instructional Guide (steps 1–10), Student View, and On-the-Fly Assessment (hummingbird icon) • Printable Resources, Print Materials (8.5" x 11"), Human Activities Evidence cards, page 36–37 [DCI, SEP] Earth's Changing Climate: • Lesson 4.3 • Activity 3, Student View and Possible Responses tab • Lesson Brief, Digital Resources, "Rubrics for Final Written Argument" [CCC] Ocean, Atmosphere, and Climate unit:

Publisher: **Amplify Education Amplify Science**

Program Title: o Activity 3, Instructional Guide present an oral (steps 1-5) and Student View and written o Activity 4, Instructional Guide argument (steps 1-5) and Student View supported by o Activity 5, Student View empirical Ocean, Atmosphere, and Climate unit: evidence and Lesson 4.1 scientific o Activity 2, Instructional Guide reasoning to (steps 1-8) and Student View support or o Activity 3, Instructional Guide refute an (steps 1-4) and Student View **Lesson Brief**, Digital Resources, explanation or "Science Seminar Evidence Cards a model for a copymaster" phenomenon o Activity 4, Instructional Guide or a solution to (steps 1-6) and Student View a problem. Lesson 4.2 (MS-ESS3-4) o Activity 1, Student View Activity 2, Instructional Guide (steps 1-5) and Student View o Activity: Introducing the Science Seminar, Instructional Guide (steps 1-6) Activity 3, Instructional Guide (steps 1–11) and Student View o Activity 4, Student View Lesson 4.3 o Activity 2, Instructional Guide (steps 1–11) and Student View o Activity 3, Instructional Guide (steps 1-5) and Student View Activity 4, Instructional Guide (steps 1-6) and Student View o Activity 5, Student View Earth's Changing Climate unit: ESS3.C: Human DCI Lesson 3.1 Impacts on Earth o Activity 2, Instructional Guide Systems simulation Typically as

include grade-approp riate databases on human populations and the rates consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition. and structure of Earth's systems as well as the rates at which they change. The consequence s of increases in human populations and

Lesson 2.4, Activity 3, Instructional Guide (steps 1-9), Student View, Modeling Tool: 2.4 Currents and Temperature, and On-the-Fly Assessment (hummingbird icon)

Rock Transformations unit:

• Lesson 3.2, **Activity 3**, Instructional Guide (steps 1–8), Student View, and simulation

[SEP]

Earth. Moon. and Sun:

- Lesson 4.3
 - o Activity 4. Instructional Guide (steps 1–5), Student View, and Possible Responses tab
 - o Lesson Brief. Digital Resources, "Rubrics for Final Written Argument"

human populations and per-capita

- (steps 1-10), Student View, and
- o Activity 3, Instructional Guide (steps 1–10)
- Printable Resources, "Print Materials (8.5" x 11"), Human Activities Evidence Cards, page 36-37

consumption

of natural

Amplify Science Program Title: Lesson 3.3, Activity 4, Student View, and resources are consumption simulation of natural described by • Lesson 3.2, Activity 2, Student View, and science, but resources "Climate Change Solutions" article science does increase, so do the not make the Earth's Changing Climate Engineering *Internship* unit: negative decisions for • Lesson 1.1 the actions impacts on o Activity: Introducing Futura, Earth unless society Introducing Futura video the activities takes.] o Activity 2, Instructional Guide and (steps 4-7) and Futura Civil Engineer's Dossier, "Futura technologies Engineering's Work on Rooftops" involved are article engineered otherwise. (MS-ESS3-4) **Cause and Effect** Rock Transformations unit: CC • Lesson 3.2, **Activity 3**, Instructional Guide C Cause and (steps 1–8), Student View, and simulation effect Earth's Changing Climate Engineering relationships *Internship* unit: may be used • Ch.1, Day 2 to predict o Activity 2, Instructional Guide and Futura Civil Engineer's Dossier, phenomena in "Roof Modification Technical Notes" natural or article designed o Lesson Brief, Digital Resources, systems. "Roof Modification Details (MS-ESS3-4) copymaster" Weather Patterns unit: • Lesson 3.2, **Activity 4**, Student View and "How We Predict the Weather" article • Lesson 2.1, **Activity 3**, Instructional Guide (step 3) Earth's Changing Climate unit: • Lesson 1.2, Activity: Introduction to Climatologist Role, Ice Scientist video

Publisher:

CC	Connections to Engineering, Technology, and Applications of Science Influence of Science, Engineering, and Technology on Society and the Natural World	Earth's Changing Climate unit: ■ Lesson 1.2, Activity 5, Student View and "The Effects of Climate Change" article ■ Lesson 3.3 ■ Activity 2, Instructional Guide (steps 2–8), Student View, and "Climate Change Solutions" article ■ Activity 3, Instructional Guide (steps 1–7), Student View, and Modeling Tool: Climate Change Solution Earth's Changing Climate Engineering Internship unit:
	• All human activity draws on natural resources and has both short and long-term consequences , positive as well as negative, for the health of people and the natural environment. (MS-ESS3-4)	 Ch.1, Day 1, Activity 1, Teacher Support tab ("Instructional Suggestion, Nature of Science, Connecting to Engineering, Technology, and Applications of Science") Ch.1, Day 2 Activity 2, Instructional Guide and Futura Civil Engineer's Dossier, "Roof Modification Technical Notes" article" Lesson Brief, Digital Resources, "Roof Modification Details copymaster"
CC	Connections to Nature of Science Science Addresses Questions About the Natural and Material World Science	Earth's Changing Climate: unit: Lesson 3.1 Lesson Brief, Lesson Overview Activity 4, Student View, "Global Warming: A History of a Hot Debate" article, and Teacher Support tab Lesson 3.3 Activity 2, Instructional Guide (step 9) Activity 6, Student View

Publisher: Amplify Education Program Title: Amplify Science							
knowledge can							
describe							
consequences							
of actions but							
does not							
necessarily							
prescribe the							
decisions that							
society takes.							
(MS-ESS3-4)							

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts		Publisher Citations	Performance Expectation	Publisher Citations
SEP	Asking Questions and Defining Problems Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, clarifying arguments and models. • Ask questions to identify and clarify evidence of an	Ocean, Atmosphere, and Climate unit: Lesson 4.2 Activity 2, Instructional Guide (steps 1–5) and Student View Activity: Introducing the Science Seminar, Instructional Guide (steps 1–6) Activity 3, Instructional Guide (steps 1–11) and Student View Lesson 4.1 Activity 2, Instructional Guide (step 8) and Student View Activity 3, Instructional Guide (steps 1–4) and Student View Activity 3, Instructional Guide (steps 1–4) and Student View Lesson Brief, Digital Resources, "Science Seminar Evidence Cards copymaster" Weather Patterns unit: Lesson 4.3 Activity: Introducing the Science Seminar, Instructional Guide (steps 1–7) Activity 2, Instructional Guide (steps 1–11) and Student View Lesson 4.2	MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. [Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion,	[DCI, CCC] Earth's Changing Climate: • Lesson 4.3 • Activity 3, Student View and Possible Responses tab • Lesson Brief, Digital Resources, "Rubrics for Final Written Argument" [SEP] Ocean, Atmosphere, and Climate unit: • Lesson 2.1, Activity 2, Instructional Guide (step 12), Student View, "The Ocean in Motion" article, and On-the-Fly Assessment (hummingbird icon) • Lesson 4.2 • Activity 2, Instructional Guide (steps 1–5) and Student View • Activity: Introducing the Science Seminar, Instructional Guide (steps 1–6) • Activity 3, Instructional Guide (steps 1–11) and Student View

	argument.	o Activity 2, Instructional Guide cement Earth's Changing Climate unit:
	(MS-ESS3-5)	(steps 1–6) and Student View production, • Lesson 3.3, Activity 3, Instructional
		o Lesson Brief, Digital Resources, and Guide (steps 1–7), Modeling Iool:
		Carson Wilderness Education Climate Change Solution, Possible
		Troopolisos tab, and on the rig
		Lesson 4.1, Lesson Brief, Digital Assessment (hummingbird icon) Assessment (hummingbird icon)
		Resources, "Carson Wilderness Education natural
		Center Evidence Cards Set 1" processes [CCC]
		Earth's Changing Climate unit: Earth's Changing Climate unit: Earth's Changing Climate unit: Earth's Changing Climate unit:
		• Lesson 4.2 changes in Guide (step 11)
		o Activity 2, Instructional Guide incoming solar
		(steps 1–11) and Student View radiation or
		o Lesson Brief, Digital Resources, Volcanic
		"Volcano Evidence D. E" and
		"Volcano Evidence G-,I Cards activity).
		copymaster" Examples of
DCI	ESS3.D: Global	Earth's Changing Climate unit: evidence can
	Climate Change	Unit Guide, Unit Overview include tables,
	 Human activities, 	Lesson 3.1: graphs, and
	such as the	o Activity 1, Instructional Guide maps of
	release of	(steps 1–2) and Student view
		Aditity 2, moradonal Calac
	greenhouse	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	gases from	A de la Mail Al de la Composition Conference (
	burning fossil	Combination Instructional Cuida
	fuels, are major	(steps 1–3) and Combustion video levels 01
	factors in the	o Activity 3, Instructional Guide gases such as
	current rise in	(steps 1–19) and Student View carbon
	Earth's mean	o Activity 4, Student View and dioxide and
	surface	Modeling Tool: Climate Change methane, and
		Cause the rates of
	temperature	• Printable Resources, "Print Materials (8.5" human
	(global warming).	X 11), Human Activities Evidence Gards,
	Reducing the	page 36–37 activities.
	level of climate	Lesson 3.2 Emphasis is
	change and	o Activity 1, Student View on the major
	reducing human	o Activity 2, Student View and "Climate Change Solutions" article
	vulnerability to	o Activity 4, Instructional Guide human
	whatever climate	(steps 1–5) and Student View activities play
		o Activity 5, Student View and in causing the
	changes do occur	simulation
	depend on the	Lesson 3.3

Amplify Science Program Title: o Activity 1, Student View understanding of rise in global o Activity 2, Instructional Guide climate science. temperatures.1 (steps 1–8), Student View, and engineering "Climate Change Solutions" article capabilities, and o Activity 3, Instructional Guide other kinds of (steps 1-9), Student View, and Modeling Tool: Climate Change knowledge, such Solution as understanding o Activity 4, Student View and of human simulation behavior and on o Activity 5, Student View and "What applying that Are We Doing About Sea Level knowledge wisely Rise?" article in decisions and Earth's Changing Climate Engineering activities. *Internship* unit: (MS-ESS3-5) • Ch.1, Day 1 o Activity: Introducing Futura, Introducing Futura video o Activity 2, Instructional Guide (steps 4–7), and Futura Civil Engineer's Dossier, "Futura Engineering's Work on Rooftops" article • Ch.1, Day 4 o Activity: Performing Iterative Tests, Instructional Guide (steps 1-6) and RoofModDesign Tool o Lesson Brief, Digital Resources, "RoofMod Data copymaster" • Ch.1, Day 8, Activity: Processing Outline Feedback, Instructional Guide (step 1) Earth's Changing Climate unit: CC • Lesson 4.3, Activity 2, Instructional Guide C Stability and (step 11) Change • Lesson 1.5, **Activity 2**, Instructional Guide (steps 1–11) and Student View Stability might • Lesson 2.2, **Activity 2**, "Past Climate Changes on Earth" article be disturbed • Lesson 4.1, Activity: Introducing Volcanic either by **Eruptions**, Instructional Guide (steps 1–5) sudden events and Climate Models video or gradual changes that

Publisher:

Publish Progra		Amplify Education Amplify Science		
	а	ccumulate		

accumulate		
over time.		
(MS-ESS3-5)		

MS-ETS1 Engineering Design

Disc	Science and ineering Practices iplinary Core Ideas scutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Asking Questions and Defining Problems Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, clarifying arguments and models. • Define a design problem that can be solved through the development of an object, tool, process or system and	 Earth's Changing Climate Engineering Internship unit: Ch.1, Day 10, Activity: Defining an Engineering Problem, Instructional Guide (steps 1–12) and Teacher Support tab ("Instructional Suggestion, Engineering Note: Ideas for Engineering Design Criteria") Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–5, 9–10) and Welcome to Futura video Plate Motion Engineering Internship unit: Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–10) and Teacher Support tab ("Instructional Suggestion, Going Further: Engineering Note: Considering Constraints in the Design Process") Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–7, 11, 12), Welcome to Futura video, and Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Pre-thinking about Criteria") 	MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit	Earth's Changing Climate Engineering Internship unit:

	includes multiple criteria and		possible solutions.	
	constraints, including			
	scientific knowledge that may limit			
	possible solutions. (MS-ETS1-1)			
DCI	ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and	 Earth's Changing Climate Engineering Internship unit: Ch.1, Day 10, Activity: Defining an Engineering Problem, Instructional Guide (steps 1–12) and Teacher Support tab ("Instructional Suggestion, Engineering Note: Ideas for Engineering Design Criteria") Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–5, 9–10) and Welcome to Futura video Plate Motion Engineering Internship unit: Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–10) and Teacher Support tab ("Instructional Suggestion, Going Further: Engineering Note: Considering Constraints in the Design Process") Ch.1, Day 1, Activity: Introducing Futura, Instructional Guide (steps 2–7, 11–12), Welcome to Futura video, and Teacher Support tab ("Instructional Suggestion, Pedagogical Goals: Pre-thinking about Criteria") 		
	other relevant knowledge			

Amplify Science Program Title: that are likely to limit possible solutions. (MS-ETS1-1) Earth's Changing Climate unit: CC Influence of • Lesson 1.2 **Activity 5**, Student View and Science. "The Effects of Climate Change" article Engineering, and • Lesson 3.3 Technology on o Activity 2, Instructional Guide (steps 2-8), Student View, and "Climate Society and the Change Solutions" article **Natural World** o Activity 3, Instructional Guide (steps 1–7), Student View, and Modeling All human Tool: Climate Change Solution activity draws Earth's Changing Climate Engineering Internship on natural unit: resources Ch.1, Day 10, Activity: Defining an and has both Engineering Problem, Instructional Guide short and (steps 1-12) long-term • Ch.1, Day 2 o Activity 2, Instructional Guide (steps consequence 1-7) and Futura Civil Engineer's s, positive as Dossier, "Roof Modification Technical well as Notes" article negative, for Lesson Brief, Digital Resources, the health of "Roof Modification Details copymaster" people and • Ch.1, Day 1, Activity: Introducing Futura, the natural Instructional Guide environment. (MS-ETS1-1) Plate Motion Engineering Internship unit: • Ch.1, Day 1, Activity: Introducing Futura, The uses of Instructional Guide (steps 2-6) and Introducing Futura video technologies Ch.1, Day 10, Activity: Applying and Engineering Skills, Instructional Guide limitations on (steps 1–10) their use are driven by individual or societal

Publisher:

needs, desires, and values; by t findings of scientific research; at by difference in such factors as climate, natural Resources,	ne Ind Ind	
economic conditions.		
(MS-ETS1-	I)	

Disc	Science and ineering Practices iplinary Core Ideas scutting Concepts	Publisher Citations	Performance Expectation	Publisher Citations
SEP	Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either	Plate Motion Engineering Internship unit: Ch.1, Day 5 O Activity: Analyzing Designs, Instructional Guide (steps 1–6) and TsunamiAlert Design Tool O Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster Ch.1, Day 6 O Activity: Testing Final Designs, Instructional Guide (steps 1–3) and TsunamiAlert Design Tool O Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster" Ch.1, Day 7, Activity: Outlining Design Decisions, Instructional Guide (steps 1–6) and Possible Responses tab	MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints	Earth's Changing Climate Engineering Internship unit: • Ch.1, Day 9 • Activity: Writing the Conclusion, Possible Responses tab • Lesson Brief, Digital Resources, "Printable Proposal Rubric" Plate Motion Engineering Internship unit: • Ch.1, Day 9 • Activity: Finalizing the Proposal, Possible Responses tab

Amplify Science Program Title: Earth's Changing Climate Engineering of the Lesson Brief, Digital explanations or Resources, "Printable Proposal Internship unit: solutions about the problem. • Ch.1, Day 4, Activity: Submitting an Rubric" natural and Optimal Design, Instructional Guide (steps designed world. 1-8) Ch.1, Day 6 Evaluate o Activity: Choosing a Design and Analyzing Data, Instructional competing Guide (steps 1–10) design o Lesson Brief, Digital Resources, solutions "Design Analysis sheet copymaster" based on jointly developed and agreed-upon design criteria. (MS-ETS1-2) ETS1.B: Earth's Changing Climate Engineering DCI *Internship* unit: Developing • Unit Guide, Unit Overview Possible Ch.1, Day 8, Activity: Processing Outline Solutions Feedback, Instructional Guide (step 1) • Ch.1, Day 10, Activity: Defining an There are Engineering Problem, Instructional Guide systematic (steps 1–12) Ch.1, Day 1, Lesson Brief, Digital processes for Resources, "Video: Engineering Tips: evaluating Analyzing Data " solutions with respect to Plate Motion Engineering Internship unit: • Unit Guide, Unit Overview how well they Ch.1, Day 6 meet the o Activity: Testing Final Designs. criteria and Instructional Guide (steps 1–3, constraints of TsunamiAlert Design Tool a problem. o Lesson Brief, Digital Resources, " TsunamiAlert Data copymaster (MS-ETS1-2) • Ch.1, Day 7, Activity: Outlining Design **Decisions**, Instructional Guide (steps 1–6) and Possible Responses tab

Publisher:

	 Ch.1, Day 10, Activity: Applying Engineering Skills, Instructional Guide (steps 1–10) 		
--	--	--	--

Science and Engineering Prac Disciplinary Core Crosscutting Cor	tices Put	olisher Citations	Performance Expectation	Pul	blisher Citations
Analyzing a Interpreting Analyzing d 6–8 builds of experiences progresses extending quantitative analysis to investigation distinguishin between correlation a causation, a basic statist techniques and error analysis. Analyzing differential content of the similar and differential conte	• Lesson 3.2 • Acta in n K-5 and to Geology on Mars • Lesson 1.1 Instruction: View • Printable I x 11"), Con pages 15- Earth's Changing • Lesson 1.5 Instruction: View Ocean, Atmosphe • Lesson 4.1 • Act o Act act data rmine ties o Le "Si A- o Act TS1-3)	etivity 3, Instructional Guide (steps 8) and Student View esson Brief, Digital Resources, torm Evidence Cards A–G" unit: 1, Activity 3, screen 2 of 2, al Guide (steps 6–16) and Student Resources, "Print Materials (8.5" mparing Rocky Planets Cards, 19 19 Climate unit: 5, Activity 2, screens 1–6 of 7, al Guide (steps 1–16) and Student ere, and Climate unit: ctivity 2, Instructional Guide (steps 8) and Student View estivity 3, Instructional Guide (steps 4) and Student View esson Brief, Digital Resources, cience Seminar Evidence Cards 1–2" ctivity 4, Instructional Guide (steps 3) and Student View esson Brief, Digital Resources, cience Seminar Evidence Cards 1–2" ctivity 4, Instructional Guide (steps 3) and Student View 15 esson Brief, Digital Resources, 15 esivity 4, Instructional Guide (steps 3) and Student View 15 esimple Internship Unit:	MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristic s of each that can be combined into a new solution to better meet the criteria for success.	Internship unit: • Ch.1, D • • Ch.1, D • • Ch.1, D • Ch.1, D • Ch.1, D • O	Activity: Writing the Conclusion, Possible Responses tab Lesson Brief, Digital Resources, "Printable Proposal Rubric"

Amplify Science Program Title: o Activity: Testing Warning System **Designs**, Instructional Guide (steps 1-3) and TsunamiAlert Design Tool Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster" o Activity: Analyzing Designs, Instructional Guide (steps 1-5) Earth's Changing Climate Engineering Internship ETS1.B: DCI unit: Developing Unit Guide, Unit Overview Possible Ch.1, Day 1, Lesson Brief, Digital Solutions Resources, "Video: Engineering Tips: Analyzing Data" and "Video: Engineering There are Tips: Optimal Designs" systematic • Ch.1, Day 4 o Activity: Performing Iterative processes Tests, Instructional Guide (steps for 1-6) evaluating o Lesson Brief, Digital Resources, solutions "RoofMod Data copymaster" with respect Ch.1. Day 6 o Activity: Choosing a Design and to how well Analyzing Data, Instructional Guide they meet (steps 1–10) the criteria o Lesson Brief, Digital Resources, and "Design Analysis sheet copymaster" • Ch.1, Day 8, Activity: Processing Outline constraints Feedback, Instructional Guide (step 1) of a problem. (MS-ETS1-3) Plate Motion Engineering Internship unit: Unit Guide, Unit Overview Sometimes Ch.1. Day 6 parts of o Activity: Testing Final Designs, different Instructional Guide (steps 1–3 o Lesson Brief, Digital Resources, solutions can "TsunamiAlert Data copymaster" be combined Ch.1, Day 5 to create a o Activity: Testing Warning System solution that **Designs**, Instructional Guide (steps is better than 1-3) o Activity: Analyzing Designs, any of its Instructional Guide (steps 1–5) predecessor • Ch.1, Day 7, Activity: Outlining Design S. **Decisions**, Instructional Guide (steps 1–6) (MS-ETS1-3) and Possible Responses tab

Publisher:

DCI	ETS1.C:	Plate Motion Engineering Internship unit:
	Optimizing the	Unit Guide, Unit Överview
	Design Solution	● Ch.1, Day 5
		o Activity: Analyzing Designs,
	Although one	Instructional Guide (steps 1–5)
	design may	o Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster"
	not perform	IsunamiAlert Data Copymaster
	the best	Earth's Changing Climate Engineering Internship
		unit:
	across all	Unit Guide, Unit Overview
	tests,	● Ch.1, Day 4
	identifying	o Activity: Submitting an Optimal
	the	Design, Instructional Guide (steps
	characteristic	1–10) o Lesson Brief, Digital Resources,
	s of the	"Roofmod Data copymaster"
	design that	Ch.1, Day 1, Lesson Brief, Digital
	performed	Resources, "Video: Engineering Tips:
	the best in	Optimal Designs"
	each test	
	can provide	
	useful	
	information	
	for the	
	redesign	
	process—tha	
	t is, some of	
	those	
	characteristic	
	s may be	
	incorporated	
	into the new	
	design.	
	(MS-ETS1-3)	

Science and Engineering Practices		Performance	Publisher Citations
	Publisher Citations	Expectation	
Disciplinary Core	Fublisher Citations		
Ideas			

	Crosscutting Concepts			
SEP	Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop a model to	Earth's Changing Climate Engineering Internship unit: Ch.1, Day 4 Activity: Submitting an Optimal Design, Teacher Support tab ("Instructional Suggestion, Going Further: Developing Models") Activity: Performing Iterative Tests, Instructional Guide (steps 1–6) and RoofMod Design Tool Lesson Brief, Digital Resources, "RoofMod Data copymaster" Plate Motion Engineering Internship unit: Ch.1, Day 5 Activity: Testing Warning System Designs, Instructional Guide (steps 1–3) and TsunamiAlert Design Tool Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster"	MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	[PE] Earth's Changing Climate Engineering Internship unit: • Ch.1, Day 9 • Activity: Writing the Conclusion, Possible Responses tab • Lesson Brief, Digital Resources, "Printable Proposal Rubric" Plate Motion Engineering Internship unit: • Ch.1, Day 9 • Activity: Finalizing the Proposal, Possible Responses tab • Lesson Brief, Digital Resources, "Printable Proposal Rubric"
DCI	generate data to test ideas about designed systems, including those representing inputs and outputs. (MS-ETS1-4) ETS1.B: Developing	Earth's Changing Climate Engineering Internship unit:		[SEP] Earth's Changing Climate Engineering Internship unit: ■ Lesson 1.4 O Activity: Submitting an Optimal Design, Teacher Support tab ("Instructional Suggestion, Going Further: Developing Models") O Activity: Performing Iterative Tests, Instructional Guide (steps 1−6) and RoofMod Design Tool O Lesson Brief, Digital Resources, "RoofMod Data copymaster"
	Possible Solutions	 Unit Guide, Unit Overview Ch.1, Day 4 Activity: Introducing the Design Cycle, Instructional Guide (step 2) Activity: Submitting an Optimal Design, Teacher Support tab 	55.457	Plate Motion Engineering Internship unit: ■ Ch.1, Day 5 ■ Activity: Testing Warning System Designs, Instructional

- A solution
 needs to be
 tested, and
 then
 modified on
 the basis of
 the test
 results, in
 order to
 improve it.
 (MS-ETS1-4
)
 - Models of all kinds are important for testing solutions. (MS-ETS1-4

("Instructional Suggestion, Going Further: Developing Models")

- o Activity: Performing Iterative Tests, Instructional Guide (steps 1–6)
- Lesson Brief, Digital Resources, "RoofMod Data sheet copymaster"
- Ch.1, Day 5
 - o Activity: Engaging in Targeted Redesign, Instructional Guide (steps 1–4)
 - Lesson Brief, Digital Resources, "RoofMod Data copymaster"
- Ch.1, Day 3, Activity: Learning About RoofMod, Instructional Guide (steps 1–5), RoofMod Demo video, and RoofMod Design Tool

Plate Motion Engineering Internship unit:

- Unit Guide, Unit Overview
- Ch.1, Day 1, **Activity: Exploring TsunamiAlert**, Instructional Guide (steps 1–5)
- Ch.1, Day 5
 - o Activity: Testing Warning System Designs, Instructional Guide (steps 1–3)
 - o Activity: Analyzing Designs, Instructional Guide (steps 1–5)
 - Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster"
- Ch.1, Day 6
 - Activity: Testing Final Designs, Instructional Guide (steps 1–3)
 - **o Lesson Brief**, Digital Resources, "TsunamiAlert Data copymaster"

ETS1.C: Optimizing the Design Solution

DCI

 The iterative process of testing the most promising

Earth's Changing Climate Engineering Internship unit:

- Unit Guide, Unit Overview
- Ch.1, Day 4
 - o Activity: Performing Iterative Tests, Instructional Guide (steps 1–6)
 - Lesson Brief, Digital Resources, "RoofMod Data sheet copymaster"
- Ch.1, Day 5

Guide (steps 1–3) and TsunamiAlert Design Tool

Lesson Brief, Digital
 Resources, "TsunamiAlert Data copymaster

[DCI]

Earth's Changing Climate Engineering Internship unit:

- Unit Guide, Unit Overview
- Ch.1, Day 4
 - o Activity: Introducing the Design Cycle, Instructional Guide (step 2)
 - Activity: Performing Iterative
 Tests, Instructional Guide (steps 1–6)
 - O Activity: Submitting an Optimal Design, Teacher Support tab ("Instructional Suggestion, Going Further: Developing Models")
 - Lesson Brief, Digital Resources, "RoofMod Data sheet copymaster"
- Ch.1, Day 5
 - o Activity: Engaging in Targeted Redesign, Instructional Guide (steps 1–4)
 - Lesson Brief, Digital Resources, "RoofMod Data copymaster"
- Ch.1, Day 3, **Activity: Learning About RoofMod**, Instructional Guide (steps 1–5), RoofMod Demo video, and RoofMod Design Tool

Plate Motion Engineering Internship unit:

- Unit Guide, Unit Overview
- Ch.1, Day 1, **Activity: Exploring TsunamiAlert**, Instructional Guide (steps 1–5)
- Ch.1, Day 5

solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (MS-ETS1-4

- o Activity: Engaging in Targeted Redesign, Instructional Guide (steps 1–4)
- Lesson Brief, Digital Resources, "RoofMod Data copymaster"

Plate Motion Engineering Internship unit:

- Unit Guide, Unit Overview
- Ch.1, Day 5
 - o Activity: Testing Warning System Designs, Instructional Guide (steps 1–3)
 - o Activity: Analyzing Designs, Instructional Guide (steps 1–5)
 - Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster"
- Ch.1, Day 6
 - o Activity: Testing Final Designs, Instructional Guide (steps 1–3)
 - Lesson Brief, Digital Resources, "TsunamiAlert Data copymaster"
- Ch.1, Day 1, Lesson Brief, Digital Resources, "Video: Engineering Tips: Optimal Designs"

- o Activity: Testing Warning System Designs, Instructional Guide (steps 1–3)
- o Activity: Analyzing Designs, Instructional Guide (steps 1–5)
- o Lesson Brief, Digital
 Resources, "TsunamiAlert Data copymaster"
- Ch.1, Day 6
 - o Activity: Testing Final
 Designs, Instructional Guide
 (steps 1–3)
 - Lesson Brief, Digital
 Resources, "TsunamiAlert Data copymaster"