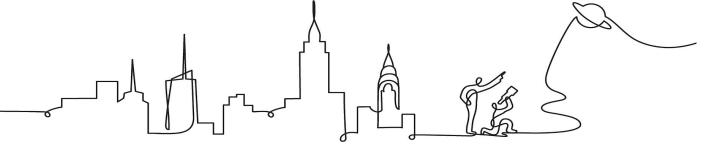
Welcome to Amplify Science!

Follow the directions below as we wait to begin.

1. Please log in to your Amplify Account.

2. Sign in using link dropped in chat.

3. In the chat, share your name, grade level, and school you teach in.



Amplify Science New York City

Supporting ELL's in the Amplify Science Classroom Grade 4

Date xx

Presented by xx

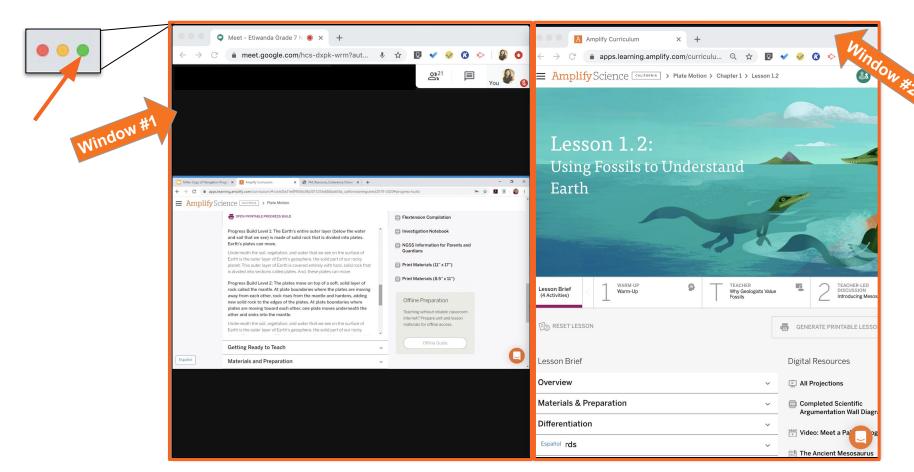
Remote Professional Learning Norms

Take some time to orient yourself to the platform

• "Where's the chat box? What are these squares at the top of my screen?. where's the mute button?"

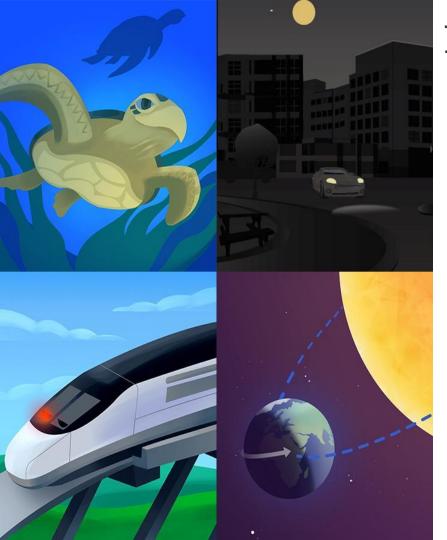
Mute your microphone to reduce background noise unless sharing with the group

The chat box is available for posting questions or responses to during the training



Make sure you have a note-catcher present

Engage at your comfort level - chat, ask questions, discuss, share!


Use two windows for today's webinar

Objectives

By the end of this 1-hour workshop, you will be able to...

- Explore strategies to support English learners ability to Do, Talk, Read,
 Write, Visualize, and argue like scientists.
- Analyze an instructional sequence through the lens of an English learner to deepen your knowledge of the critical role of language and literacy in developing scientific understanding.
- Become familiar with the research based principles which guide the creation of the supports and strategies in Amplify science that aid students development of disciplinary literacy in science.

Plan for the day

• Framing the day

Welcome and introductions

• Amplify Science Approach

- Multimodal Instruction
- Exploring strategies Do, Talk, Read, Write, and Visualize

Amplify Science Embedded Supports

- The role of language and literacy
- Differentiation
- Lesson instructional sequence

• Amplify Science Discourse Routines

- Research based principles for creating supports
- Strategies that supporting language & literacy development in science

Closing

• Reflection/Survey

Plan for the day

Framing the day

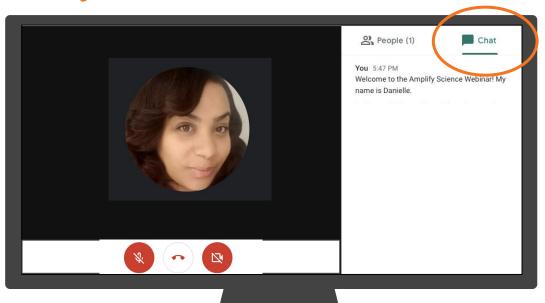
- Welcome and introductions
- The role of language and literacy

• Amplify Science discourse routines

- Multimodal Instruction
- Strategies that support language development in science

• Amplify Science Embedded Support

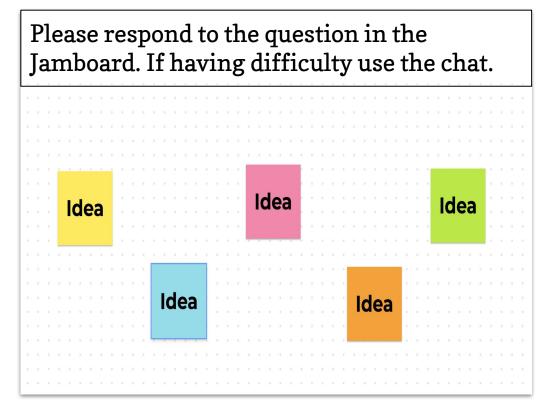
- Differentiation
- Analyzing embedded supports for diverse learners


Closing

Reflection/Survey

Introductions!

Who do we have in the room today?


- Introduce yourself (Name, School, Role)
- In the chat, share one word or phrase thats describes how you teaching Amplify.

Anticipatory activity

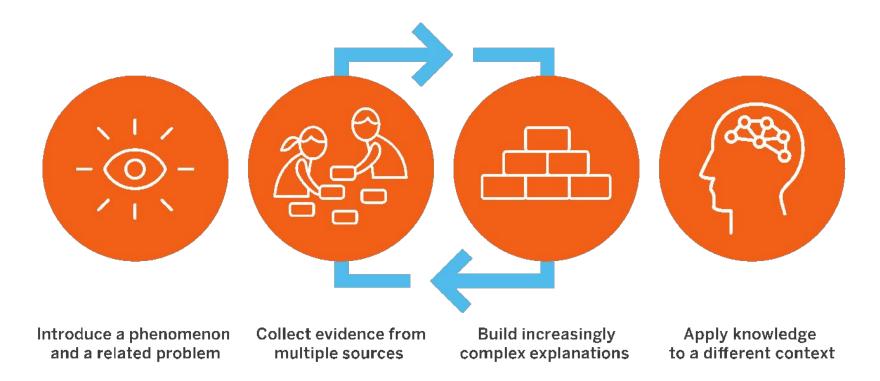
On the Jamboard "post"....

 What strategies are you currently using to engage and support ELL learners in your classroom?

Plan for the day

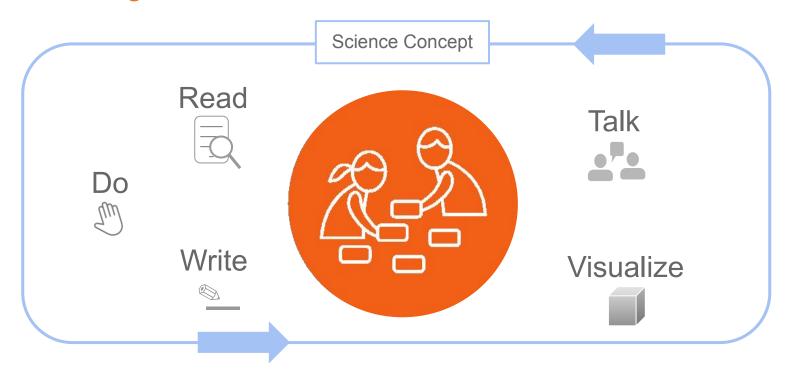
- Framing the day
 - Welcome and introductions
- Amplify Science Approach
 - Multimodal Instruction
 - Exploring strategies Do, Talk, Read, Write, and Visualize
- Amplify Science Embedded Supports
 - The role of language and literacy
 - Differentiation
 - Lesson instructional sequence
- Amplify Science Discourse Routines
 - Research based principles for creating supports
 - Strategies that supporting language & literacy development in science
- Closing
 - Reflection/Survey

Multimodal Instruction & 3D Learning


Multimodal, phenomenon-based learning

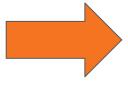
In each Amplify Science unit, students embody the role of a scientist or engineer to **figure out** phenomena.

Through problem based deep dives, they gather evidence from multiple sources, using multiple modalities.


Amplify Science approach

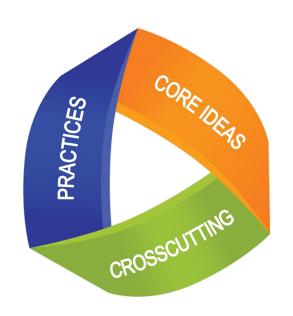
Amplify.

Multimodal learning


Gathering evidence from different sources

Topics vs. Phenomena

A shift in science instruction


from learning about (like a student)

to figuring out

(like a scientist)

Three dimensions of NYSSLS

Disciplinary Core Ideas

• Describe core ideas in the science discipline (DCI)

Science and Engineering Practices

 Describe behaviors scientists and engineers engage in (SEP)

Crosscutting Concepts

 Describe concepts linking the different domains of science (CCC)

Science and Engineering Practices (SEP)

How students engage as scientists

- 1. Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Science and Engineering Practices (SEP)

How students engage as scientists

language

- 1. Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- Obtaining, evaluating, and communicating information © 2018 The Regents of the University of California

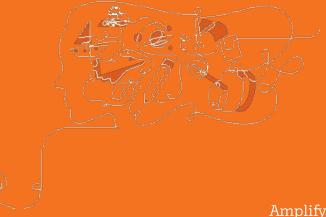
Disciplinary Core Ideas (DCI)

How students figure out what they want to know as scientist

PS3.A: Definitions of Energy

PS3.B: Conservation of Energy and Energy Transfer

PS3.D: Energy in Chemical Processes and Everyday Life


ESS3.A: Natural Resources

ETS1.A: Defining and Delimiting Engineering Problems

ETS1.B: Developing Possible Solutions

ETS1.C: Optimizing the Design Solution

Do, Talk, Read, Write, Visualize

Crosscutting Concepts (CCC)

How students think like scientists

<u>Do:</u> Students take on several design challenges in which they must consider the functions of the parts of the systems they design and the interactions between those parts. They also investigate simple electrical systems built by peers in order to identify the cause of system failure. Over the course of the unit, the design solutions become more complex, and students are asked to grapple with more criteria and make difficult decisions between competing criteria and trade-offs.

<u>Talk:</u> Multiple opportunities for student-to-student discourse engage the class in synthesizing evidence they have collected in order to figure out what they can infer about reasons for electrical-system failure. Students come to a deeper understanding of the function of the electrical system.

<u>Read:</u> Students read and obtain information about systems and system models from informational texts during the unit, including Systems, which uses familiar systems to introduce key ideas about this important crosscutting concept. In other books, students read about electrical systems, interactions of parts in those systems, and how the failure of one part can affect the whole system. In addition, students refer to a content-rich reference book for evidence as they design solutions for an electrical system.

<u>Write:</u> Over the course of the unit, students have multiple opportunities to write their understandings about systems as well as write evidenced-based design arguments and explanations of electrical systems, system models, and energy conversion and conversion within systems. Students also use graphic organizers to help them understand the functions of various parts of systems.

<u>Visualize</u>: Through physical demonstrations and use of images and diagrams, students are able to visualize concepts related to energy systems, such as what happens when there is not enough energy in a system to power all devices.

Do, Talk, Read, Write, Visualize (Multimodal Instruction)

Look at each modality, choose one, and drop a current support you would provide for your ELL students in the chat.

challenges in which they must consider the functions of the parts of the systems they design and the interactions between those parts. They also investigate simple electrical systems built by peers in order to identify the cause of system failure. Over the course of the unit, the design solutions become more complex, and students are asked to grapple with more criteria and make difficult decisions between competing criteria and trade-offs.

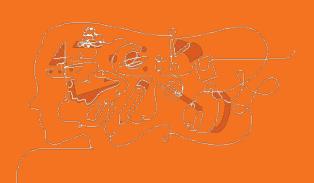
Talk: Multiple opportunities for student-to-student discourse engage the class in synthesizing evidence they have collected in order to figure out what they can infer about reasons for electrical-system failure. Students come to a deeper understanding of the function of the electrical system.

Read: Students read and obtain information about systems and system models from informational texts during the unit, including Systems, which uses familiar systems to introduce key ideas about this important crosscutting concept. In other books, students read about electrical systems, interactions of parts in those systems, and how the failure of one part can affect the whole system. In addition, students refer to a content-rich reference book for evidence as they design solutions for an electrical system.

Write: Over the course of the unit, students have multiple opportunities to write their understandings about systems as well as write evidenced-based design arguments and explanations of electrical systems, system models, and energy conversion and conversion within systems. Students also use graphic organizers to help them understand the functions of various parts of systems.

Visualize: Through physical demonstrations and use of images and diagrams, students are able to visualize concepts related to energy systems, such as what happens when there is not enough energy in a system to power all devices.

Support:	Support:	Support:	Support:	Support:	


Amplify Amplify

Plan for the day

- Framing the day
 - Welcome and introductions
- Amplify Science Approach
 - Multimodal Instruction
 - Exploring strategies Do, Talk, Read, Write, and Visualize
- Amplify Science Embedded Supports
 - The role of language and literacy
 - Differentiation
 - Lesson instructional sequence
- Amplify Science Discourse Routines
 - Research based principles for creating supports
 - Strategies that supporting language & literacy development in science
- Closing
 - Reflection/Survey

The role of language and literacy

Reflect and Share:

How does learning Science support language development?

"Science class is a language development opportunity if the discourse is managed to be inclusive and supportive. All students need support at some level or another."

-Dr. Helen Quinn

Particle physicist and National Academy of Sciences Chair

Language of the science classroom

The ways in which **students and teachers** use **oral** and **written** language to interact with each other, to **obtain information** from written materials, and to participate in **discourse** to construct understanding about science.

Language vs. Science

In the following activity you will read descriptions of Amplify Science activities students engage with as they figure out unit phenomena. Language: Students are developing academic language

Science: Students are developing understanding of science and engineering ideas

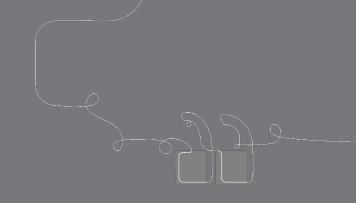
You decide! Language, Science, or Both!

Students are

language

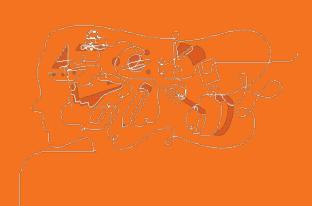
For each of the cards, indicate if students are developing language, science ideas, or both?

B Students are developing Students are understanding of science developing academic developing both academic and engineering ideas language and language understanding of science and engineering ideas Students explain what type of force caused the ball in the pinball machine they designed to go in the direction it went A student looks at genetic information from two "parent" creatures and creates a model of an offspring's traits using clay Students explore magnetic forces using magnets and other materials, then generate and discuss questions and initial ideas about magnets. Partners read a book about how two sisters learn about magnets and record what they learn. After sorting a series of temperature graphs, the class figures out how temperature can vary differently over a year in different parts of the world.


Students write up and share their ideas for the best way to solve Ergstown's rolling blackout problem.

Students record observations of radish seeds: some are planted in soil with water and others are planted in soil with no water.

Students use their bodies to make a kinesthetic line plot of orangutan heights.


Students are developing Students are understanding of science developing academic developing **both** academic and engineering ideas language and understanding of science and engineering ideas

Reflect and Share:

What new insights were you able to gain about language ideas vs. science idea for ELL students in Amplify Science?

Differentiation

Multilingual Learners

ENACTING THE FIVE PRINCIPLES IN THE CURRICULUM

 Principle 1: Leverage and build students' informational background knowledge.

 Principle 2: Capitalize on students' knowledge of language.

 Principle 3: Provide explicit instruction about the language of science.

 Principle 4: Provide opportunities for scaffolded practice.

 Principle 5: Provide multimodal means of accessing science content and expressing science knowledge.

Differentiation briefs

Categories of differentiation briefs

- Embedded supports for diverse learners
- Potential challenges in this lesson
- Specific differentiation strategies for English learners
- Specific differentiation strategies for students who need more support
- Specific differentiation strategies for students who need more challenge

Lesson 1.2 Differentiation for ELL students

Embedded Supports for Diverse Learners

Partner Reading. Reading with a partner provides opportunities for students to assist each other with reading—with using the reading strategy modeled by the teacher, with decoding, and with comprehension. Partner reading encourages discussion of the text during reading, which aids comprehension and engagement.

Supportive visuals in the book. The diagrams and tables in Systems are designed to clarify the meaning of the text and should support students' comprehension of concepts and ideas.

Potential Challenges in This Lesson

Reading-centered. Reading science texts is challenging, and the strategy of synthesizing may be unfamiliar to many students.

Students who struggle with reading in general may struggle with the reading in this lesson.

Synthesizing across activities. Synthesizing information from a variety of sources is a complex cognitive task and can be challenging for students. The synthesizing reading comprehension strategy may be new to students. Some students may find it difficult to incorporate new information from the reading into their growing understanding of systems. Keep in mind that students will have many opportunities over the course of the unit to learn to use this complex strategy.

Specific Differentiation Strategies for English Learners

Billingual Spanish glossary, Having access to translations and definitions of new science terms in Spanish is helpful for English learners for whom Spanish is their primary language. Have students turn to pages 90–91, Glossary, in the Energy Conversions Investigation Notebook. Encourage students to refer to this glossary as needed throughout the unit.

Cognates. Many of the academic words that students will be learning over the course of this lesson and unit are Spanish cognates. Cognates are words in two or more different languages that sound and/or look the same or very nearly the same and that have similar or identical meanings. At several points in this unit, a note will be provided in this section listing relevant Spanish/English cognates. You may decide to support students by keeping a running list on chart paper of cognates that students encounter in this unit on chart paper, or by encouraging students to keep their own lists that they can refer to as needed. The Spanish cognates that will be helpful for students in this lesson are: system/sistema. function/funcion, part/part, and engineer/ingeniero. Cognates are especially rich linguistic resources to exploit for academic English language development and for biliteracy development.

Promoting inclusion in discussions. Participating in discussions is critical for English learners to develop science knowledge and the language of science. Some English learners may be hesitant to contribute to class or small-group discussions because they lack experience or confidence in participating in small or large group discussions. However, they have a lot to say. There are several steps you can take to support English learners to fully engage in discussions and to feel that their contributions are valued.

- Ahead of time, create in collaboration with the class (and frequently refer to) norms for discussions to ensure that all students understand how to include their peers and respect their contributions.
- Before the whole-class discussion, give students an opportunity to practice telling a partner something they might want to share with the whole class.
- Make a suggestion about what a particular student might share
 in an upcoming discussion by saying something such as "I see
 that you and your partner used __to __. Would you be willing
 to share that with the class?"
- For English learners at the early Emerging level of English language proficiency (i.e., Newcomer ELs), pair them with a language mentor, a student who is bilingual in the Newcomer EL's language and in English and who can serve as a bridge between the two languages (ensure that this student is prepared and supported adequately to do so).
- Students should be encouraged to express themselves in the language in which they are most comfortable and to increasingly integrate accurate science terms and phrasing in English into their discussions (through the use of language frames or referring to class charts or the classroom wall where resources such as Key Concepts and Unit Vocabulary are posted).

 Have students reflect on their level of participation and what helped them to be an active participant in the discussions.

Multiple meaning words. Words with multiple meanings may present an obstacle for English learners. To help avoid confusion, before reading, explain that some words have more than one meaning.

Discuss some examples likely to be familiar, such as *can* or *mouse*. Then, have pairs work together to complete the optional activity on page 5, Multiple Meaning Words, in the Investigation Notebook.

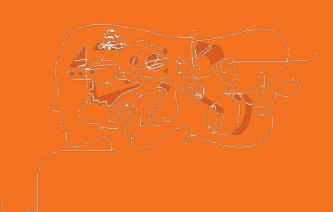
Specific Differentiation Strategies for Students Who Need More Challenge

Reading Reflection. A Reading Reflection activity for each book is included in the Investigation Notebook. These are optional written activities designed to reinforce concepts in the books and provide prompts to encourage further thinking about the text. These activities are designed for early finishers to use during Partner Reading and can also be used in a variety of other ways, such as to reinforce concepts on a second read of the book or as homework. The Reading Reflection for this book (on page 4, Reading Reflection: Systems, in the Investigation Notebook) offers a chance for students to return to the text to think about changes to and failures in an electrical system.

Specific Differentiation Strategies for Students Who Need More Support

Anticipation Guide. For each book, we provide an optional Anticipation Guide in the Investigation Notebook. Anticipation Guides can help support students by activating prior knowledge before reading, promoting engaged reading, and encouraging students to monitor their comprehension. If you choose to use this optional activity, have students turn to page 3, Cetting Ready to Read: Systems, in the Investigation Notebook. Review the directions and explain that students should work with a partner to decide if they agree or disagree with each statement. After reading, ask partners to revisit the statements and discuss whether they want to change any responses based on their reading. Encourage students to refer to the text as they discuss.

Activate background knowledge. If students are not familiar with the term blackout, adjust the prompts in Activity 1 to include more everyday language. For example, you might say, "Think of a time when you were at home, at school, or in another place when the power suddenly went out. Maybe this was because there was a storm or natural disaster, or maybe it was because the electrical system lost power. Tell a partner what you remember about this experience. What did you do? How was the power restored? How did you feel when the power came back?"


Choose partners for struggling students strategically. Creating positive and supportive student partnerships is a crucial first step for creating the kind of classroom culture in which students feel confident and comfortable sharing their thinking. This unit provides many opportunities for student learning to occur through discussion and partner activities. Thinking ahead to create good working partnerships will be an essential component of success for these collaborative lessons.

Reading with a small group or as a class. One option for adjusting the lesson for students who need more support is to form small groups. The group can work together during a first read, and/or read with you or another adult. If many students in your class struggle significantly with reading, you could read the texts aloud and ask students to follow along, after which you could provide students with an opportunity to read the text again more independently.

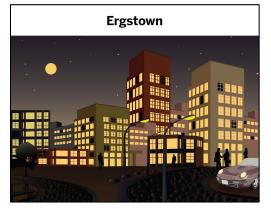
Sentence frames and sentence starters. For this lesson's discussions, you can offer support for students who are less comfortable speaking in class by providing the following prompts as scaffolds and encouraging students to use them as needed.

- . When there was a blackout ____, I ____
- I think blackouts happen because _.
- I wonder, _?

Instructional Sequence

Grade 4 | Energy Conversions Lesson 1.2: Introducing Systems **Amplify**Science

Activity 1: Reflecting on the Unit Problem

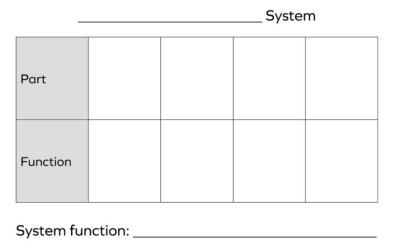

Modality: Teacher Led Discussion

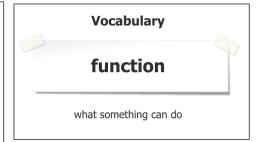
Students **reflect on the previous lessons activities**. Students are reminded of their role as systems engineers in Ergstown and are introduced to the chapter 1 question. Students revisit the 3 scenes in Ergstown before, during, and after the blackout and begin to **investigate**, **what is a system?**

Chapter 1 Question

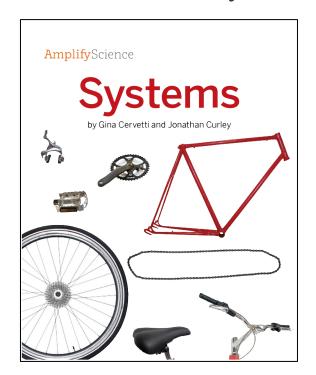
What happened to the electrical system the night of the Ergstown blackout?

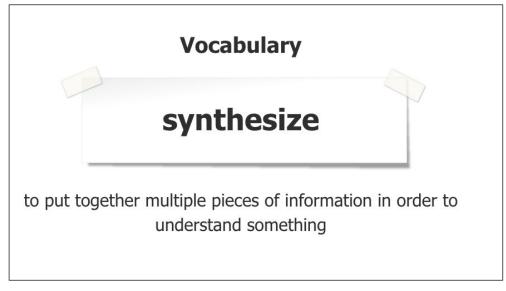
Amplify.


Activity 2: Observing a Simple System


Modality: Teacher Led Discussion

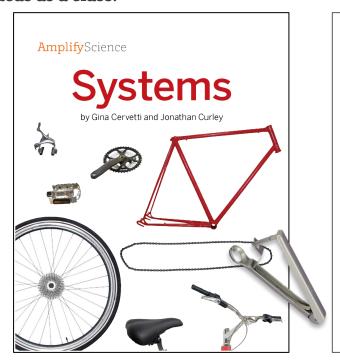
Students observe a cherry pitter as an example of a simple system. Together the class **identifies the** parts of the system and their functions.




Activity 3: Introduction to Synthesizing

Modality: Teacher Led Discussion

Students are **introduced to the** *Systems* **text**. The teacher models the reading strategy of synthesizing.

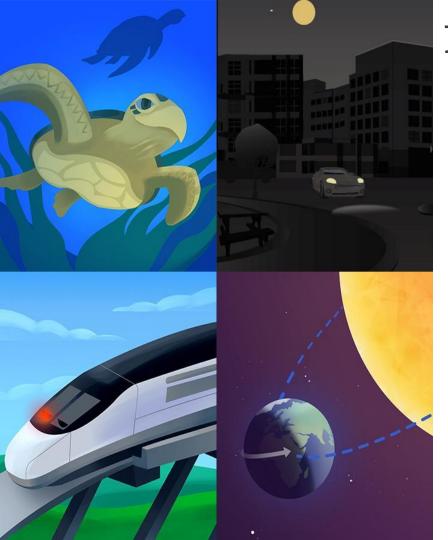


Activity 4: Reading Systems

Modality: Reading

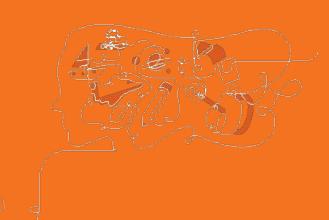
Student pairs read Systems, applying the synthesizing strategy as they read, then reflect on their new ideas as a class.

Partner Reading Guidelines


- 1. Sit next to your partner and place the book between you.
- 2. Take turns reading.
- 3. Read in a quiet voice.
- **4.** Be respectful and polite to your partner.
- 5. Ask your partner for help if you need it. Work together to make sure you both understand what you read.

End of Lesson

Amplify.


 $\label{published} \hbox{ Published and Distributed by Amplify. www.amplify.com}$

Plan for the day

- Framing the day
 - Welcome and introductions
- Amplify Science Approach
 - Multimodal Instruction
 - Exploring strategies Do, Talk, Read, Write, and Visualize
- Amplify Science Embedded Supports
 - The role of language and literacy
 - Differentiation
 - Lesson instructional sequence
- Amplify Science Discourse Routines
 - Research based principles for creating supports
 - Strategies that supporting language & literacy development in science
- Closing
 - Reflection/Survey

Research Based Principles

Multilingual Learners

ENACTING THE FIVE PRINCIPLES IN THE CURRICULUM

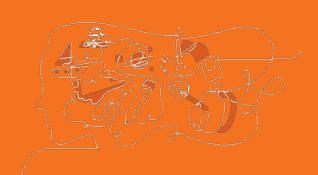
 Principle 1: Leverage and build students' informational background knowledge.

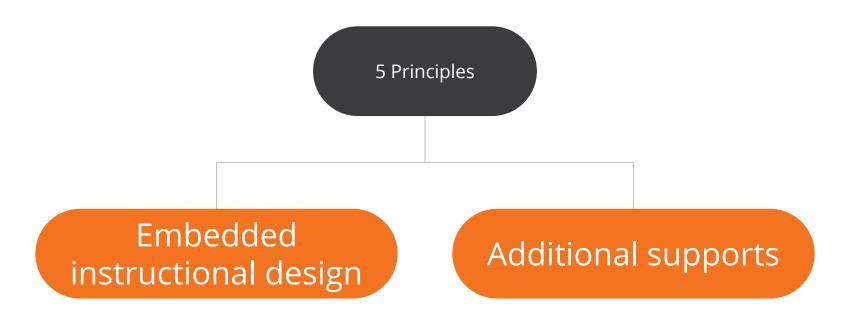
 Principle 2: Capitalize on students' knowledge of language.

 Principle 3: Provide explicit instruction about the language of science.

 Principle 4: Provide opportunities for scaffolded practice.

 Principle 5: Provide multimodal means of accessing science content and expressing science knowledge.

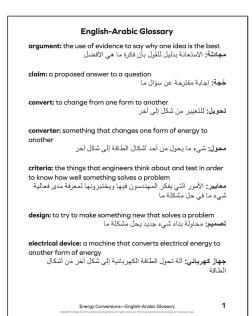



Think & Share

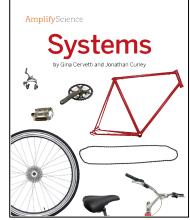
Choose one principle, how could you implement this principle to support ELL students in your classroom?

Strategies that support language and literacy development

Supports for English learners



Embedded instructional design


- Modeling Active Reading/ Active Reading
- Anticipation Guides
- Science/ Everyday Word Chart
- Word Relationships Activities
- Graphic Organizers
- Reflective writing with language frames/ sentence starters
- Practice Tools
- Physical and digital models

Additional supports

- Cognates
- Multilingual Glossary
- Word Banks
- Multiple-Meaning Words
- Extended Modeling
- Additional Visual Representations
- Optional Graphic Organizers
- Response Option

Resources for Supporting Multilingual Learners

- Optional investigation notebook pages
- Digital copy of vocabulary words
- Access to lesson level powerpoints (editable)

- Remote learning access for students (via Program Hub)
 - Student readers (English/Spanish)
 - Modeling tools/Sims/Practice tools
 - Videos with calls to action (English/Spanish)
 - Student slides, packets, and sheets (editable)

Language vs. Discourse

Academic language

Academic discourse

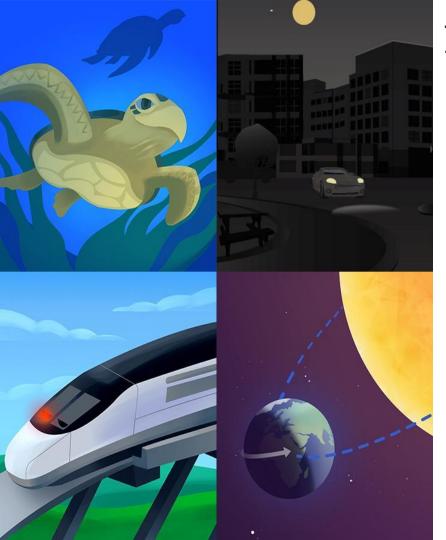
- What is...?
- List...
- Students use tier 1 and 2 vocabulary

- Prove/disprove with evidence...
- What would happen if....how do you know?
- Explain how this connects to...
- Students use tier 2 & 3 vocabulary

Amplify Science discourse routines

- Oral Composition and/or Drawings as teacher captures words (K-1)
- Explanation Language Frames
- Shared Listening
- Partner Reading
- Thought Swap
- Think-Pair-Share
- Word Relationships
- Questioning Strategies [K-8]
 - Do you agree/disagree?

	Kindergarten - Grade 1	Grades 2-5
Discourse routines	Students engage in informal partner, small group, and full class talk as well as with Shared Listening, a structured discourse routine. To work towards answering each Chapter question, students first compose responses orally with a Language Frame activity using sentence frames written on sentence strips, completed with cards. They use this practiced sentence structure to write explanations together as a class (Shared Writing) or in their investigation notebooks.	Students engage in informal partner, small group, and full class talk as well as with a variety of structured discourse routines. Each unit includes 2-3 different routines such as: • Shared listening • Think-pair-share • Think-draw (or write) -pair-share • Thought swap • Concept mapping • Word relationships • Building on ideas • Evidence circles


Additional support considerations

Modifying the instructional suggestions for my students

- Additional practice time
- Strategic grouping
- Additional resources (multilingual glossary, word banks, other environmental print)
- Increased support for gradual release of responsibility
- Alternative response options

Reflect and Share

Plan for the day

• Framing the day

Welcome and introductions

• Amplify Science Approach

- Multimodal Instruction
- Exploring strategies Do, Talk, Read, Write, and Visualize

Amplify Science Embedded Supports

- The role of language and literacy
- Differentiation
- Lesson instructional sequence

• Amplify Science Discourse Routines

- Research based principles for creating supports
- Strategies that supporting language & literacy development in science

Closing

• Reflection/Survey

Revisiting Session Objectives:

By the end of this 1-hour workshop, you will be able to...

- Explore strategies to support English learners ability to Do, Talk, Read,
 Write, Visualize, and argue like scientists.
- Analyze an instructional sequence through the lens of an English learner to deepen your knowledge of the critical role of language and literacy in developing scientific understanding.
- Become familiar with the research based principles which guide the creation of the supports and strategies in Amplify science that aid students development of disciplinary literacy in science.

New York City Resources Site

https://amplify.com/resources-page-for-nyc-k-5/

Amplify.

Amplify Science Resources for NYC (K-5)

Welcome! This site contains supporting resources designed for the New York City Department of Education Amplify Science adoption for grades K–5.

UPDATE: Summer 2020

Introduction

Getting started resources

Planning and implementation resources

Admin resources

Parent resources

COVID-19 Remote learning resources 2020

Professional learning resources

Questions

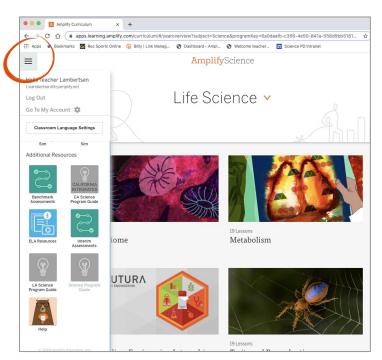
UPDATE: Summer 2020

Account Access: It's an exciting time for Amplify Schave access to the many updates and upgrades in o your regular credentials to login and begin your sur curriculum until late August/early September whe rosters from STARS.

Site Resources

- Login information
- Pacing guides
- Getting started guide
- NYC Companion Lessons
- Resources from PD sessions
- And much more!

Any schools or teachers new to Amplify Science in 20/21 are encouraged to contact our Help Desk (1-800-823-1969) for access to your temporary login for summer planning.


Upcoming PL Webinars: Join us for our Summer 2020 Professional Learning opportunities in July for NEW teachers and administrators and August for RETURNING teachers and administrators. Links to register coming soon!

Amplify Science Program Hub

A new hub for Amplify Science resources

- Videos and resources to prepare for instruction
- Amplify@Home resources
- Self study resource and much more!

*Check back often to stay update to date with Amplify Science *

Additional Amplify resources

Program Guide

Glean additional insight into the program's structure, intent, philosophies, supports, and flexibility.

https://my.amplify.com/programguide/content/national/welcome/science/

Amplify Help

Find lots of advice and answers from the Amplify team.

my.amplify.com/help

Additional Amplify Support

Customer Care

Seek information specific to enrollment and rosters, technical support, materials and kits, and teaching support, weekdays 7AM-7PM EST.

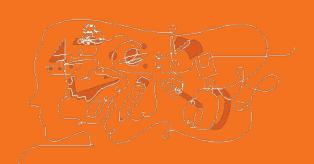
scihelp@amplify.com


800-823-1969

Amplify Chat

When contacting the customer care team:

- Identify yourself as an Amplify Science user.
- Note the unit you are teaching.
- Note the type of device you are using (Chromebook, iPad, Windows, laptop).
- Note the web browser you are using (Chrome or Safari).
- Include a screenshot of the problem, if possible.
- Copy your district or site IT contact on emails.


Final Questions?

Please provide us feedback!

URL: https://www.surveymonkey.com/r/BY56SBR

Presenter name: XXX

