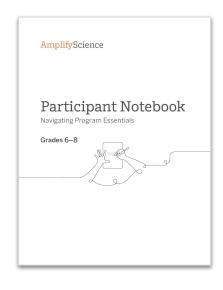
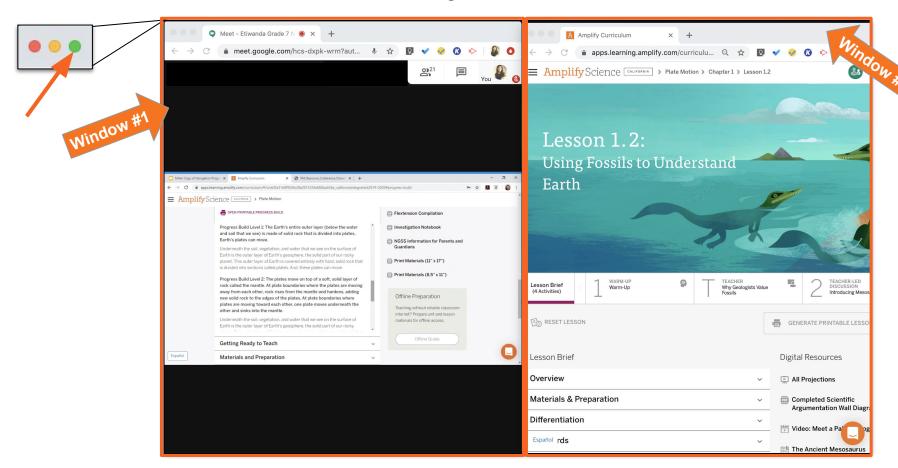

Welcome to Amplify Science!

Do Now: Login and open your digital participant packet

- 1. Go to **learning.amplify.com**
- 2. Select Log in with Amplify
- 3. Enter teacher demo account credentials
 - nycdoe_middle@tryamplify.net
 - Password: AmplifyNumber1
- 4. Explore as we wait to begin

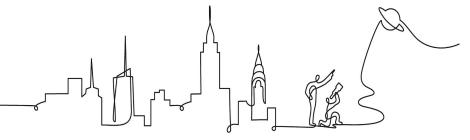

Welcome to Amplify Science!

Student log-in (optional)



- 1. Go to **learning.amplify.com**
- 2. Select Log in with Amplify
- 3. Enter teacher demo account credentials
 - s.nycdoe_middle@tryamplify.net
 - Password: AmplifyNumber1
- 4. Explore as we wait to begin

Use two windows for today's webinar


Amplify Science New York City

Introduction to Amplify Science NYC Summer Institute, Day 2

Grade 6: Harnessing Human Energy & Thermal Energy

New York City Department of Education July 22, 2020

Presented by

Remote Professional Learning Norms

Orient yourself to the platform

• "Where's the chat box? Where's the mute button?"

Mute your microphone unless sharing with the group

Use the chat box for posting questions or responses

Have a note-catcher

Engage at your comfort level - chat, ask questions, discuss.

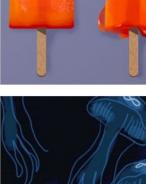
Culture Building

Share your answers in the chat.

- Question 1: What did you learn about yesterday that made you excited to teach Amplify Science?
- Question 2: What are you looking forward to learning more about today?

Overarching goals

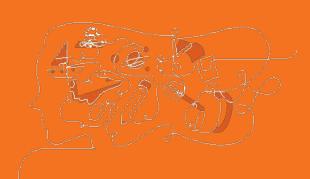
By the end of this institute, you will be able to:


- Navigate the Amplify Science curriculum.
- Understand the program's multimodal approach and instructional materials.
- Apply program essentials to prepare to teach an Amplify Science unit.
- Make an informed decision about which of the Amplify
 Science Hybrid Learning Resources will best support your
 students.

Day 2 Objectives

By the end of the session you will be able to:

- Understand the purpose of Launch Units.
- Apply program essentials to prepare to teach an Amplify Science Launch Unit.
- Make an informed decision about which of the Amplify Science Hybrid Learning Resources will best support your students.



Plan for the day

- Experiencing the Launch Unit
- Launch Unit Components
- Planning to Teach
- Remote/Hybrid Resources
- Closing and reflection

Experiencing the Launch Unit

Middle School Curriculum New York City Edition

Grade 6

 Launch: Harnessing Human Energy

- Thermal Energy
- Populations and Resources
- Matter and Energy in Ecosystems
- Weather Patterns
- Ocean, Atmosphere, and Climate
- Earth's Changing Climate

Grade 7

 Launch: Microbiome

- Metabolism
- Phase Change
- · Chemical Reactions
- · Plate Motion
- Engineering Internship: Plate Motion
- Rock Transformations
- Engineering Internship: Earth's Changing Climate

Grade 8

 Launch: Geology on Mars

- · Earth, Moon, and Sun
- Force and Motion
- Engineering Internship:
 Force and Motion

- Magnetic Fields
- Light Waves
- Traits and Reproduction
- Natural Selection
- Evolutionary History

What is a launch unit?

- First unit of the year
- Interesting, immersive, and often surprising problem-context
- Introduces practices that are integral to science, such as:
 - Argumentation
 - Reading
 - Writing
 - Talking about science ideas
 - Using models
- Introduces routines such as:
 - Active reading
 - Discourse routines

Harnessing Human Energy

Problem: Students need to help a team of rescue workers find a way to power the batteries in their equipment during rescue missions.

Role: Energy Scientists at the Energy Research Lab

Students learn about energy transfer and conversion in order to design a solution for the rescue workers.

Unit Question

How is it possible to charge electrical devices when the power is out?

Hamessing Human Energy—Unit Question—Lesson 1.1 © 2018 The Regents of the University of California

READ FULL OVERVIEW

Chapter 1: What Is Energy?

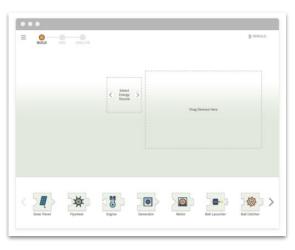
Chapter 1 Question

Energy Needs

What is energy and why does it matter to the rescue team?

Solution

Solution


4 Lessons

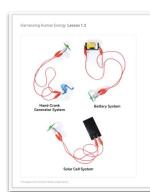
3 Lessons

4 Lessons

Amplify.

Chapter 1: What Is Energy?

JUMP DOWN TO CHAPTER OVERVIEW


Lesson 1.1: Welcome to the Energy Research Lab

Lesson 1.2:
Investigating Energy
Claims

Lesson 1.3: Identifying Kinetic Energy and Potential Energy

Chapter 1: What Is Energy?

Next, we will **build three different systems** and
make a scientific
argument that answers
this **question**:

Activity 3

Do all the systems have energy?


JUMP DOWN TO CHAPTER OVERVIEW

Lesson 1.1:

Welcome to the Energy Research Lab Lesson 1.2:

Investigating Energy Claims Lesson 1.3:

Identifying Kinetic Energy and Potential Energy

"Energy Inventions"

Classroom Wall

Unit Question

How is it possible to charge electrical devices when the power is out?

Chapter 1 Question

What is energy and why does it matter to the rescue team?

Investigation Question

How do you know something has energy?

Key Concepts

1. Whenever something moves or changes it's because of energy.

Vocabulary

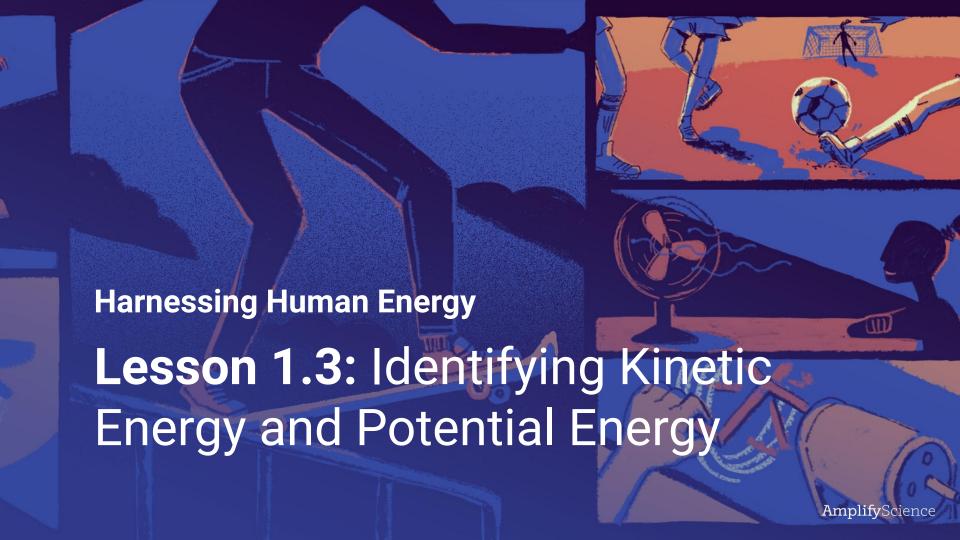
system

claim

energy

evidence

reasoning


Preparing to Teach

Understand
how the
lesson will
flow

Gather your materials

Know the unit's big idea

Prepare your digital device plan

Activity 1 Warm-Up

Warm-Up

The lead energy scientist has forwarded you a message from an Energy Research Lab client. Read the message and decide how you would respond to the client.

Dear student energy scientists,

Now that you have been learning about energy, I would like your help responding to some questions we receive here at the Energy Research Lab. Please see the email I've included below.

Sincerely, Morgan Lewis Lead Energy Scientist, Energy Research Lab

Email from client:

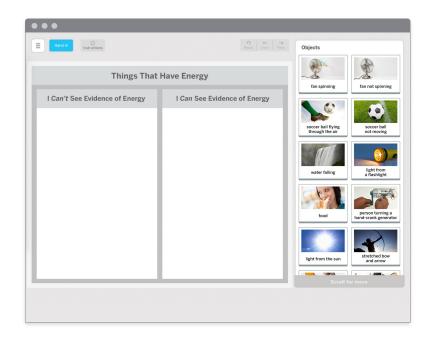
Dear Energy Research Lab,

My friend drives around in her electric car, and she has to charge the car's batteries every night. However, I never need to plug in my bike! Therefore, I think I can get from place to place without using energy at all.

What do you think? Is riding a bike a way to travel that doesn't use energy?

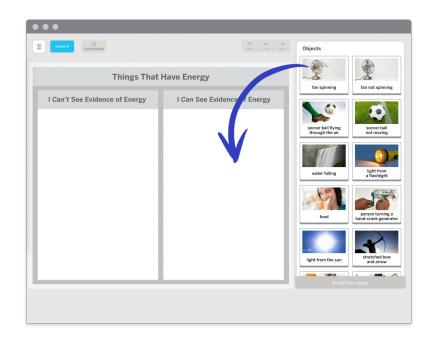
Sincerely, Sasha (Energy Research Lab client)

Activity 2 Evidence of Energy



Key Concept

1. Whenever something moves or changes, it is because of energy.


Remember, we are investigating this question:

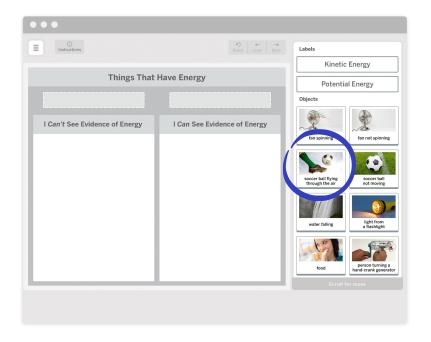
Investigation Question: How do you know something has energy?

Today you'll do another **sorting** activity to show your ideas about energy.

You'll drag objects into the bins to show whether you can see evidence of energy or not.

For instance, this image shows a fan moving. Energy is the ability to make things move or change, and this movement is evidence I can see that the fan has energy.

Evidence of Energy


Launch the Sorting Tool activity: Evidence of Energy and follow the instructions below. Talk to a partner about your ideas as you work.

Goal: Look at each object and decide whether you can see evidence of energy.

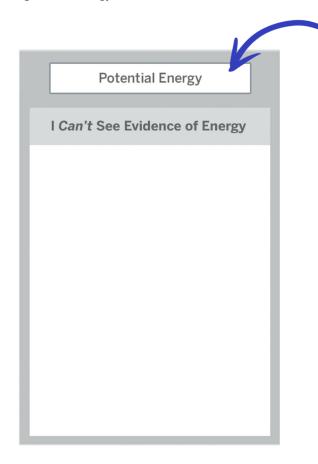
Do:

- Think about the definition of energy as you look at each object. Do you see evidence of energy?
- If you can't see evidence of energy, drag the object to bin on the left.
- If you can see evidence of energy, drag the object to the bin on the right.
- Leave objects you are not sure about in the toolbar.

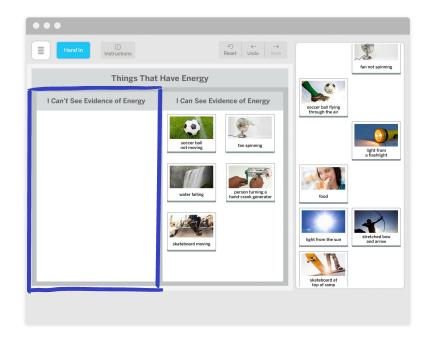


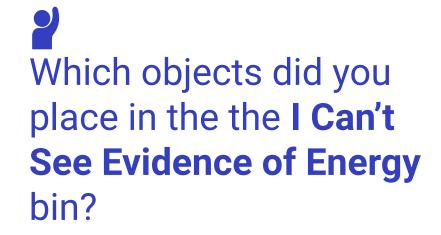
Let's think about the soccer ball flying through the air.

Which bin did you place the **flying soccer ball** in, and why?



Which other objects did you place in the I Can See Evidence of Energy bin?


All of these objects are moving. When an object is moving, it has a certain type of energy called kinetic energy.


I labeled this bin **Kinetic Energy**.

Some objects have stored energy. Though they might not be moving or changing, they have the ability to make things move or change.

This is **potential energy**.

These objects all have potential energy.

Let's discuss how each of these objects has the ability to make something move or change.

Vocabulary kinetic energy

the energy that an object has because it is moving

Vocabulary

potential energy

the energy that is stored in an object or system

Some objects are still in the toolbar. The light from a flashlight and the light from the sun have energy, but they don't fit into our two bins. We will just leave them where they are for now.

We'll leave the fan and the **soccer ball** too. They are not moving, so they don't have kinetic energy, and it does not appear that they have the ability to make anything move or change in the future.

Key Concept

2. When something is moving, it has kinetic energy.

Key Concept

3. When something has the ability to make things move or change in the future, it has potential energy, even if it is not moving or changing now.

Activity 3
Kinetic Energy and
Potential Energy
Demonstration

Identifying evidence of potential energy can be challenging.

Why is it **easier** to gather evidence that something has **kinetic energy?**

We will use these wind-up toys to think more deeply about how to gather evidence that objects have kinetic energy or potential energy.

Before we begin the wind-up toy demonstration, let's answer some poll questions to get us thinking about wind-up toys.

Kinetic Energy and Potential Energy Demonstration

Observing Kinetic and Potential Energy

Before your teacher begins the demonstration, answer the following poll questions.

- 1. A wind-up toy that is not wound up . . .

 does not have energy.

 has kinetic energy.

 has potential energy.

 has both kinetic and potential energy.
- 2. A wind-up toy that is wound up but not moving ...

 does not have energy.

 has kinetic energy.

 has potential energy.

 has both kinetic energy and potential energy.
- 3. A wind-up toy that is wound up and moving . . .

 does not have energy.

 has kinetic energy.

 has potential energy.

 has both kinetic energy and potential energy.

Let's look at the poll results to see your current ideas about whether wind-up toys have energy.

Let's start the demonstration with both toys just sitting on the table.

Is there any evidence that either of the toys has kinetic energy?

Now I'll wind up one of the toys and let it go.

What evidence of kinetic energy do you see now?

For the next part, both toys are just sitting on the table again.

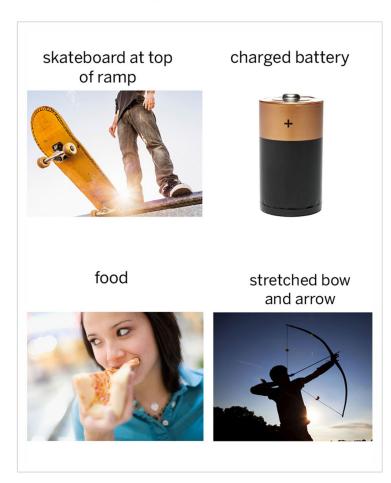
Is there any evidence that either of the toys has potential energy?

Now I'll wind up one of the toys and hold it in the wound-up position.

Is there any evidence that either of the toys has potential energy now?

The two toys look identical, but one has potential energy.

Is there anything we could do to gather evidence about the potential energy stored in the wind-up toy?


Even though the toys looked nearly identical before, it is clear now that one toy had a form of energy that the other did not.

This is **potential energy**.

Activity 4 Reflection

You will now have a chance to apply what you have learned about potential energy. You'll choose an object you think has potential energy and explain your thinking.

Reflection

How Do You Know Whether an Object Has Potential Energy?

- Select *one* object from the choices below that you think has potential energy.
- Explain why you think the object you selected has potential energy.

charged battery

food



stretched bow and arrow

Activity 5 Homework

For this activity, you will reflect on what you've learned about energy and respond to some questions about the Rescue Team.

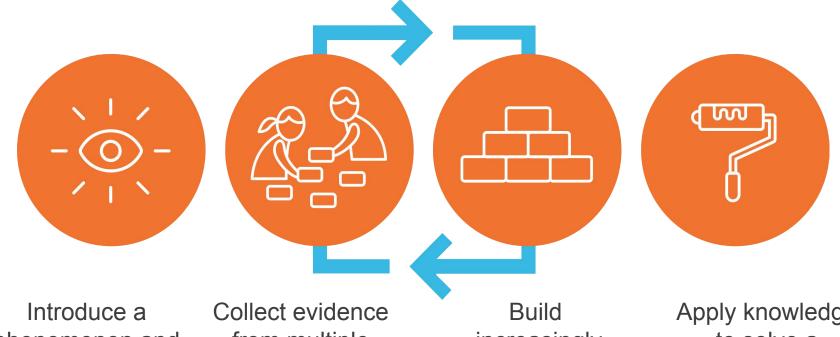
• • •

Homework

Energy and the Rescue Team

You have been investigating why energy matters to the rescue team, and now you've learned about two different categories of energy.

1. What is one way that kinetic energy might be involved in rescue team missions?


End of Lesson

Amplify.

Published and Distributed by Amplify. www.amplify.com

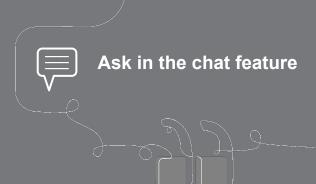
What aspects of the Amplify Science Instructional Approach did you experience in the Launch Unit?

Introduce a phenomenon and a related problem

Collect evidence from multiple sources

increasingly complex explanations

Apply knowledge to solve a different problem


Lesson Reflection

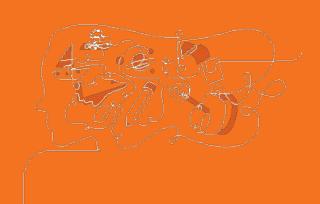
Answer in the chat feature

How is a launch unit lesson similar/different from a core unit lesson?

What questions do you have?

Questions?

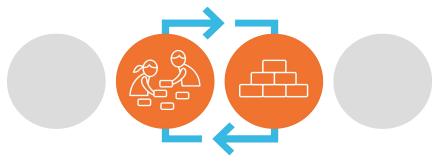
5 min break



Plan for the day

- Experiencing the Launch Unit
 - Launch Unit Components
- Planning to Teach
- Remote/Hybrid Resources
- Closing and reflection

Launch Unit Components



Argumentation in Amplify Science

Goals for argumentation in Amplify Science

- To provide students an authentic opportunity to engage in the practice of argumentation
- To make clear to students the purpose of argumentation and the role it plays in building and communicating scientific knowledge
- To help students build their own knowledge through argumentation

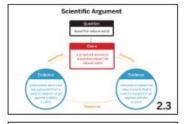
Specific goals for argumentation in launch units

- Introduce the practice of argumentation in science
- Introduce **tools** that will be used throughout the year to support students in getting better at specific aspects of oral and written argumentation:
 - Card sorts
 - Evidence gradient
 - Reasoning tool

Completed Scientific Argumentation Wall Diagram

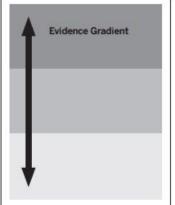
Scientific Argumentation

2.3


The purpose of a scientific argument is to convince others, using evidence and reasoning.

Evaluating Evidence

2.3


Scientists use relevant evidence to support a claim.

2.3

2.3

Example Student Argument

A scientific argument . . .

- . begins with a question.
- has a claim that proposes an answer to the question.
- · has evidence that supports the claim.
- clearly explains how the evidence supports the claim (reasoning).

Argumentation Sentence Starters

- I think this evidence supports this claim because . . .
- I don't think this evidence supports this claim because . . .
- · Lagree because . . .

2.3

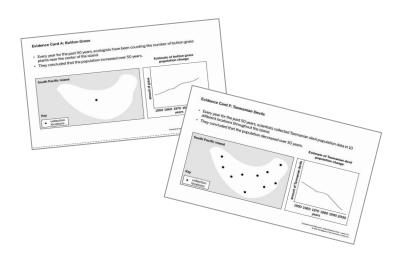
- I disagree because . . .
- . Why do you think that?

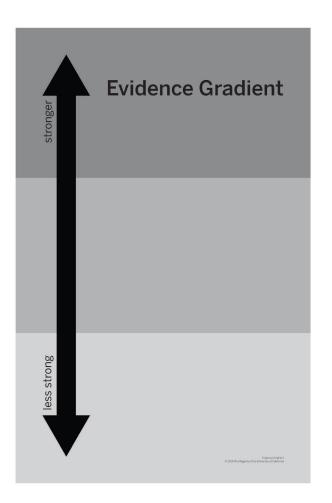
© 2005 The Regents of the University of California

2.6

2.3

Reasoning Tool


Reasoning Tool


Evidence	This matters because (How does this evidence support the claim?)	Therefore, (claim)

Microtrome—Reasoning Tool—Lessen 2.5 © 2015 The Regents of the University of California

Evidence Gradient

Evidence is higher quality if it comes from a reliable source.

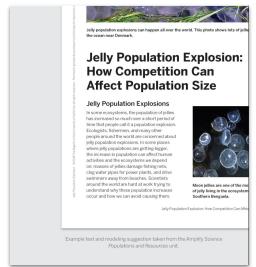
Introducing Argumentation, Lesson 1.2

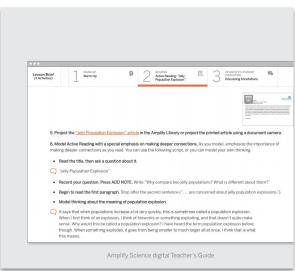
Independent work time directions:

- Navigate to lesson 1.2
- Use the lesson materials to find out how argumentation is introduced.
- Be ready to share out.

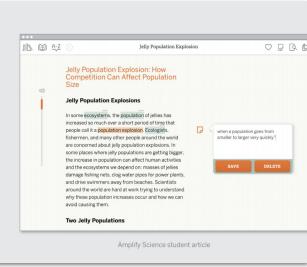
Reflection

- How is argumentation introduced? What tools/scaffolds are included to support students in developing this practice?
- Is there anything you anticipate your students will find challenging? What action will you take to support them?

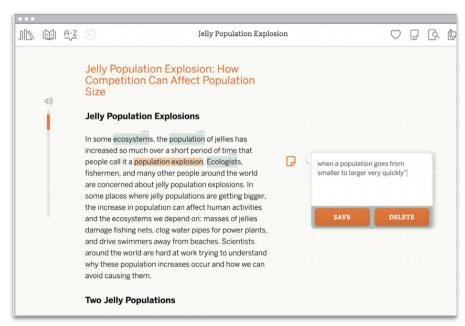

Active Reading in Amplify Science


Amplify.

Active Reading


Teacher Modeling

Step 1: An excerpt of student text is read aloud by the teacher


Step 2: The teacher models her thinking

Step 3: The teacher models annotating the text

Active Reading

The first read

Students individually annotate the text by taking notes, and recording questions.

Students discuss their ideas and annotations with partners and dig back into the text together.

Active Reading

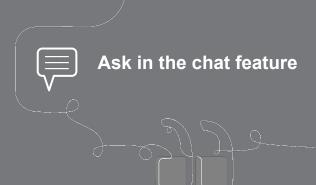
The second read

Students reread a portion of the article for a particular purpose such as to examine a specific visual representation, answer a question, find evidence to support a claim or draw conclusions across texts.

Students discuss the text with a partner

Active Reading Guidelines

- 1. Think carefully about what you read. Pay attention to your own understanding.
- 2. As you read, annotate the text to make a record of your thinking. Highlight challenging words and add notes to record questions and make connections to your own experience.
- **3.** Examine all visual representations carefully. Consider how they go together with the text.
- **4.** After you read, discuss what you have read with others to help you better understand the text.

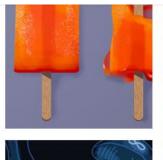

Introducing Active Reading, Lesson 1.4

Independent work time directions:

- Navigate to lesson 1.4
- Use the lesson materials to see how active reading is introduced.
 - Make sure to click on the article link to explore the digital text.
- Be ready to share out.

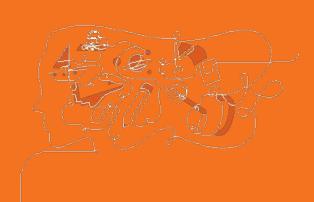
Reflection

- How is active reading introduced? What tools/scaffolds are included to support students?
- Is there anything you anticipate your students will find challenging? What action will you take to support them?



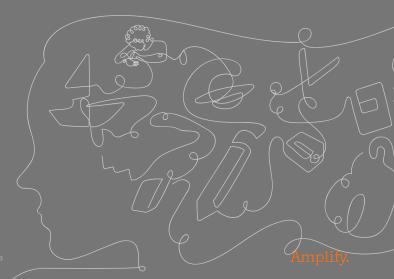
Questions?

5 min break



Plan for the day

- Experiencing the Launch Unit
- Launch Unit Components
- Planning to Teach
- Remote/Hybrid Resources
- Closing and reflection


Planning to Teach

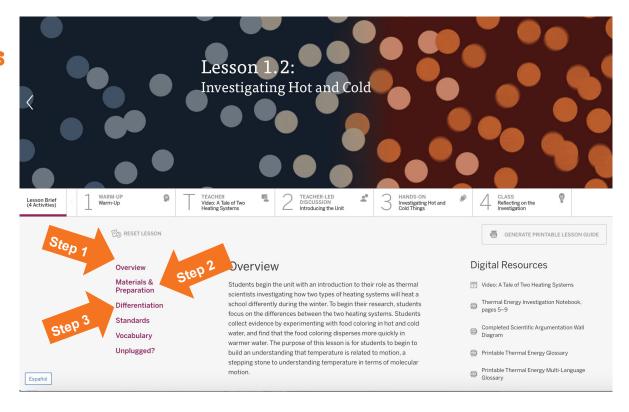
How do you typically prepare to teach a new unit?

Practice Planning a Lesson

What you need for this section:

Google or Word document

OR



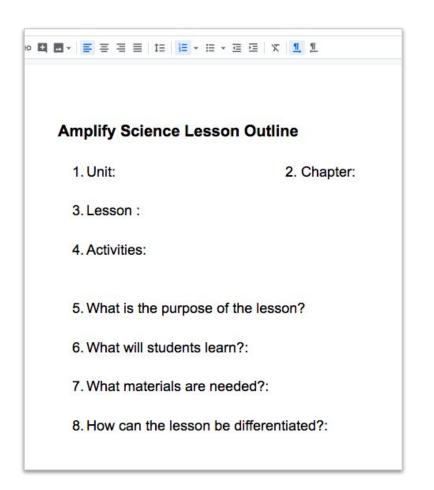
Follow these 3 Easy Steps for lesson preparation

Step 1: Read the lesson overview

Step 2: Read the Materials and Preparation section

Step 3: Read the Differentiation section

Go 'live' to walk through lesson planning


Outline your lesson

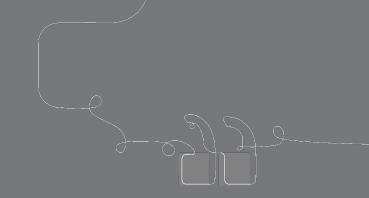
Follow these 3 Easy Steps for lesson preparation

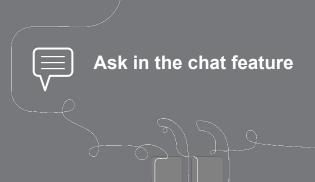
Step 1: Read the lesson overview

Step 2: Read the Materials and Preparation section

Step 3: Read the Differentiation section

Reflect on planning a lesson


Reflecting on planning a lesson How are students introduced to the unit's anchor phenomenon? What are the big ideas students take away from the lesson? What key vocabulary will students engage with? What are a few learning modalities students engaged with during the lesson? How are students thinking and solving problems like a scientist?


Debrief

What might your students be challenged by?

Questions?

5 min break

Plan for the day

- Experiencing the Launch Unit
- Launch Unit Components
- Planning to Teach
- Remote/Hybrid Resources
- Closing and reflection

Remote/Hybrid Resources

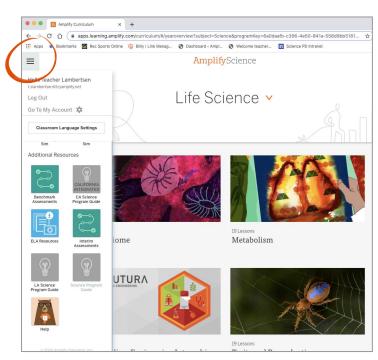
Remote/Hybrid Learning Guidance

amplify.com/remotelearning

 Access resources and suggestions for using Amplify programs remotely.

Program Hub

- Access two new product features for teaching select units in various remote models.
 - Amplify Science@Home Videos
 - Amplify Science@Home Units



Amplify Science Program Hub

A new hub for Amplify Science resources

- Videos and resources to continue getting ready to teach
- Coming soon: Amplify@Home resources
- Keep checking back for updates

science.amplify.com/programhub

Amplify Science@Home

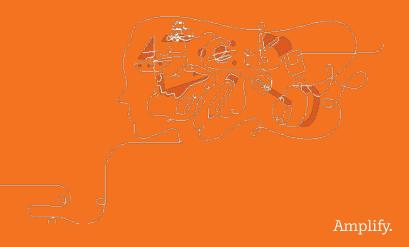
A suite of resources that...

- Are designed for students to complete independently
- Require no materials except a pencil and paper
- Include digital and print-only options
- Can be leveraged in a variety of remote and hybrid instructional formats

Amplify Science@Home

@Home Units

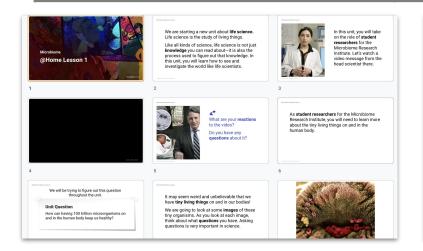
 Packet or slide deck versions of Amplify Science units condensed by about 50%

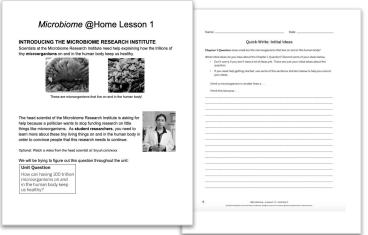

@Home Videos

 Video playlists of Amplify Science lessons, taught by real Amplify Science teachers

Tips for selecting and using the resource

Selecting @Home Units


You might use this resource if...


- You have less instructional time for science than you normally would
- You need a solution for remote, asynchronous student learning some or all of the time

Two options for student access

For students with consistent access to technology at home, use @Home Slides

For a print-only option, use <a>@Home Packets

@Home Unit resources

All resources are fully editable and customizable

- Teacher Overview
 - Outlines the unit and summarizes each lesson
- Family Overview
 - Provides context for families
- Student materials
 - 30-minute lessons featuring subsets of activities from Amplify Science curriculum

Student materials

- Brief narrative sections providing key content
- Activity instructions
- Vocabulary support
- Student sheets for writing, drawing, and diagramming
- Packets available in Word or .pdf
- Slides available in PowerPoint or .pdf

Control Comment (1997) (Section 1997) Quarke Window State S	Record your initial ideas about the Chapter 1 Question in the Quick-Write: Initial Ideas
Names and Adapt Williams	activity. Ould-Write: Initial Ideas page or Lesson 1.1. Activity 2

Teacher Overview

- Instructions for establishing key routines
- Pacing suggestions for expanding or further condensing
- Assessment considerations for each chapter
- Guidance for synchronous and in-person learning for each lesson

@Home Unit Overview: Microbiome

About the @Home Units

The Amplify Science @Home Units are versions of Amplify Science units adapted for use with asynchronous instruction in a remote learning or hybrid learning situation. The resources, delivered in either digital or printable form, allow students to complete activities independently or with minimal help from a family member. @Home Units focus on a reduced set of prioritized activities, while preserving a coherent instructional build. The @Home Units retain a multimodal approach, engaging students in adapted versions of doing, talking, reading, writing, and visualizion.

These resources are intended to be modified and adapted for your particular situation. We provide suggestions for further adjusting the lessons for your context, including how to use the resources when some synchronous or in-person instruction is possible. For more in-depth information and the full teaching guide, please refer to the Microbiome unit at learning amplificement your provided in the control of the provided in the

Overview of @Home Unit Resources

Teacher resource

This @Home Unit Overview provides general information for teaching with the @Home Units. It also contains chapter-specific outlines for the @Home Microbiome unit with guidance about the subset of unit activities to be taught.

Student resources

The @Home Units include two options for student access during asynchronous learning:

- @Home Slides + Student Sheets (for students with consistent access to technology at home)
- @Home Packets (for students without consistent access to technology at home). Both options provide guidance for students to complete the lessons independently or with minimal family support. For students using the @Home Packets, adaptations have been made so that digital resources, such as student apps and videos, are eliminated or optional. Similarly, for both @Home Sildes and @Home Packets, activities which require specific physical materials have been modified or made optional. Note: student resources include information about how to access videos of these activities, which can be viewed on any digital device, including smart phones.

lete only one chapter, your students will i do not complete the entire unit, you may thenomenon.

, students engage with key ideas through ting, talking and writing. If needed one or dents will still have exposure to key ng activities are provided with each

ssons may be appropriate in your include:

Microbiome unit, Specific suggestions

ne Microbiome Investigation Notebook.
d of each chapter.
Ints to explore, for example mold growing tome explorations, phenomena ideas.

ne Microbiome Opportunities for Unit

t/uploads/science-unit-extensions/MB-O

Remote Learning

a by using science and engineering and make explanations and arguments ing, and visualizing. They also make assroom wall. While we have retained at home will require adaptations.

se adaptations, but you may need to set up expectations for specific routines or provide additional <u>supports</u> to your students. Below are ideas for how different aspects of the Amplify Science approach might be adapted for your learners' particular contexts.

Student Talk options

. Talk to a member of their household about their ideas

Family Overview

- Introduction to the unit and types of activities
- List of key ideas and vocabulary
- Suggestions for supporting students working at home

Hello!

Your student is about to start a unit called *Microbiome* in science class. We hope that the information here can help support you as you guide your student through their at-home science learning.

We are using a program called Amplify Science, which is split up into units about different areas of science. In each unit, students start by wondering about something that happens in the real world and they investigate, talk, read, write, think, and argue like real scientists and engineers in order to figure out how and why that thing happens.

In the Microbiome unit, students learn about the trillions of microorganisms that live on and in the human body, which all together are called the human microbiome. As they figure out what's going with one patient's microbiome, students get familiar with the practices of science, including the specific ways that scientists investigate, talk, read, write, and argue. These practices will be important as students study science throughout the year, and beyond.

We are using a version of Microbiome that is specially designed for at-home learning, it gives students many opportunities to consider different questions about the human microbiome, gather evidence to help them understand, then use that evidence to make an explanation. This means students will be doing activities that involve talking, writing, reading, and investigating.

In order to support your student, you can help them with understanding directions, writing about their ideas, and reading articles. Students are asked to do some activities with a partner, and you can be your student's partner as they talk over questions and ideas and practice scientific arguments.

In this unit, students are investigating what's happening with Patient 23, and you may wish to ask your student:

- "What did you figure out in your science lesson today?"
- "How does that help you understand what's happening with Patient 23?"
 Answering these questions after every lesson can help students understand more deeply and keep them interested in learning more.

see, cells are much bigger than molecules.

imately 100 trillion microorganisms. Most of

nt (food and space) for bacteria to survive.

Il types of bacteria.

uman microbiome can make a person sick.

I and harmful bacteria in the microbiome.

pful bacteria in their guts can become infected
and space available for harmful bacteria.

Jse?

at students use throughout the unit. Getting imes different from how people use these sport your student's at-home learning. Your words along with additional words from the

anisms, especially bacteria icroorganismos, especialmente las bacterias y fa a single cell án hechos de una sola célula I living things and are the smallest units able to

nstituyen todos los seres vivientes y que son las impeñar las funciones de la vida about the natural world ina pregunta sobre el mundo natural world that is used to support or go against

evidencia: información sobre el mundo natural que se utiliza para respaldar o rechazar (refutar) una afirmación

- microbiome: all of the microorganisms that live in a particular environment, such as a human body microbioma: todos los microorganismos que viven en un ambiente específico, por ejemalo en un cuerno humano
- microorganism: an organism that is too small to be seen with the naked eye
 microorganismo: un organismo que es demasiado pequeño como para ver a simple vista
- microscopic: too small to be seen with the naked eye

Selecting @Home Units

Different ways to use the resource

- Assign students @Home Lessons to work through independently at home
- Teach live during in-person or online synchronous time
 - Refer to Teacher Overview resources for suggestions for synchronous instruction, or
 - Revisit hands-on activities, digital tool uses, or discussion moments

@Home Units example use case

Remote Asynchronous Model: Students work flexibly through

content

Assign @Home Lessons 1-2 (Packets or Slides)

Friday

Students submit work product through email, or by writing on paper and texting the teacher a photo of their work

@Home Units example use case

Hybrid Model: Teach live during in-person time

Wednesday

Monday-Tuesday

Remote

Assign: @Home Lesson 1 (Packet or Slides)

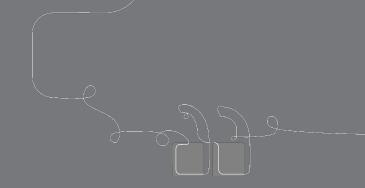
In-person

Teach: @Home Lesson 1: Ideas for synchronous or in-person instruction

Thursday-Friday

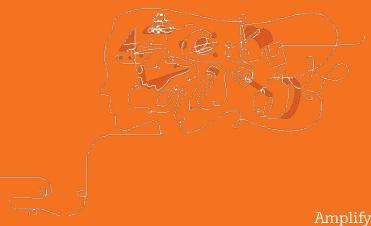
Remote

Assign: @Home Lesson 3 (Packet or Slides)


Planning to use @Home Units

- Download and read your unit's **Teacher Overview** on the Program Hub
- Plan for establishing key routines for talk, writing, reading, hands-on, and classroom wall references
 - (See: Adapting the Amplify Science Approach for Remote Learning in your unit's Teacher Overview)
- Determine how students will access slides or packets, and how they will submit work
- Consider pacing, including when you have synchronous science time with your students (if applicable)

Reflection


What other ideas do you have for using @Home Units?

How could you make this resource work for your learning scenario?

@Home Videos

Tips for selecting and using the resource

Selecting @Home Videos

You might use this resource if...

- Your students have access to internet-connected devices at home
- You have about the same amount of instructional time for science as you normally would
- You need a solution for remote, asynchronous student learning some or all of the time

Selecting @Home Videos

Different ways to use the resource

- Assign students video lessons to watch at home
- Teach live during in-person or online synchronous time!
 - Teach full lessons, or
 - Revisit parts of lessons in the videos students have already watched
- Watch the videos yourself as a model, then make videos of yourself teaching to send to your students

@Home Videos example use case

Hybrid Model: Teach live during in-person time

Tuesday

Monday

Assign: Lesson 1.1

Remote

Video

In-person

Teach: Lesson 1.2 live

Wednesday

Remote

Assign: Lesson 1.3 Video

Remote

Assign: Lesson 1.4 Video

Thursday

Friday

In-person

Revisit: hands-on or discourse-based activities the week's lessons

117

@Home Videos example use case

Remote Synchronous Model: Discussions during online class

Monday

Asynchronous

Assign: Lesson 1.1 Video

Tuesday

Asynchronous

Assign: Lesson 1.2 Video

Wednesday

Synchronous

Teach: Lead class discussion to review key ideas from 1.1 and 1.2

Thursday

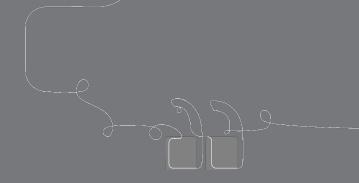
Asynchronous

Assign: Lesson 1.3 Video

Friday

Asynchronous

Assign: Independent written reflection about week's lessons

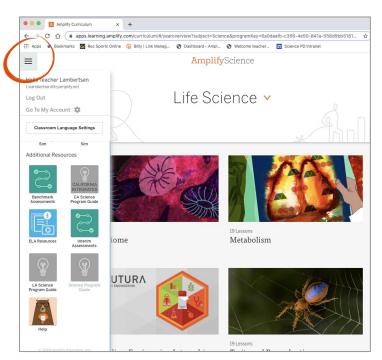

Planning to use @Home Videos

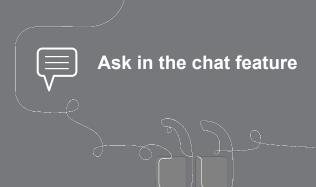
- Determine how students will access videos, and how they will submit work
- Consider pacing, including when you have synchronous science time with your students (if applicable)
- Plan for student access to digital tools and/or digital books and articles (if applicable)
- Consider how you'll communicate with families about this resource

Reflection

What other ideas do you have for using @Home Videos?

How could you make this resource work for your learning scenario?



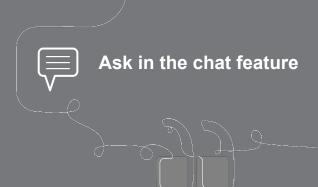

Amplify Science Program Hub

A new hub for Amplify Science resources

- Click on Global Navigation
- Scroll down and click on Program Hub
- Take some time to explore the resources here.

science.amplify.com/programhub

Questions?



Plan for the day

- Experiencing the Launch Unit
- Launch Unit Components
- Planning to Teach
- Remote/Hybrid Resources
- Closing and reflection

Closing and Reflection

Questions?

Revisiting Day 2 Objectives

Are you able to...

- Understand the purpose of Launch Units?
- Apply program essentials to prepare to teach an Amplify Science Launch Unit?
- Make an informed decision about which of the Amplify Science Hybrid Learning Resources will best support your students?

Overarching goals

By the end of this institute, you will be able to:

- Navigate the Amplify Science curriculum.
- Understand the program's multimodal approach and instructional materials.
- Apply program essentials to prepare to teach an Amplify Science unit.
- Make an informed decision about which of the Amplify
 Science Hybrid Learning Resources will best support your
 students.

Closing reflection

Based on our work today, share:

Brain: something you'll keep in mind

Heart: something you're feeling

Feet: something you're planning to do

New York City Resources Site

https://amplify.com/amplify-science-nyc-doe-resources/

Amplify.

Amplify Science

Login information

- Pacing guides
- Getting started guide
- **NYC Companion** Lessons
- Resources from professional learning sessions
- And much more!

YC (6-8)

resources designed for

ion Amplify Science

HALL OF SCIENCE UNIVERSITY OF CALIFORNIA, BERKELEY

Amplify.

UPDATES: Summer 2020

Program Rollover - Login Access: It's an exciting time for Amplify Science as we are updating our program to reflect all of the amazing new features for the 2020-21 school year! During this rollover process (July 1-17), you will be temporarily unable to login with your personal account so we can apply the most recent upgrades to our content that will assist with your summer planning for the 20/21 school year.

We encourage you to use the NYC reviewer site for full curriculum access during the transition. Once on the site, scroll to the bottom of the page and select Begin your review → select your grade level → teacher.

On **July 18**, your personal login will be restored and you will be able to log back in with your regular credentials to see the updated curriculum for 20/21 in your

COVID-19 Remote learning resources 2020

Professional learning resources

Questions

Additional Amplify resources

Program Guide

Gather additional insight into the program's structure, intent, philosophies, supports, and flexibility.

my.amplify.com/programguide

Amplify Help

Find advice and answers from the Amplify team.

my.amplify.com/help

Additional Amplify support

Customer Care

Access information specific to enrollment and rosters, technical support, materials and kits, and teaching support, weekdays 7AM-7PM EST.

- **800-823-1969**
- Amplify Chat

Additional Amplify Support

Customer Care

Seek information specific to enrollment and rosters, technical support, materials and kits, and teaching support, weekdays 7AM-7PM EST.

scihelp@amplify.com

800-823-1969

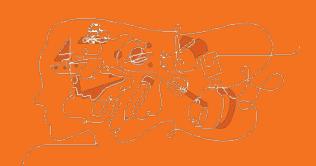
Amplify Chat

When contacting the customer care team:

- Identify yourself as an Amplify Science user.
- Note the unit you are teaching.
- Note the type of device you are using (Chromebook, iPad, Windows, laptop).
- Note the web browser you are using (Chrome or Safari).
- Include a screenshot of the problem, if possible.
- Copy your district or site IT contact on emails.

Please provide us feedback!

URL: https://www.surveymonkey.com/r/InitialAmplifySciPL


Presenter name:

Workshop title: Navigating Program Essentials 6-8

Modality: Remote

